一、一类二阶非线性摄动微分方程的振动性(论文文献综述)
冯瑞华[1](2021)在《几类时间尺度上具有偏差变元三阶动力方程的振动性研究》文中认为近几十年来,由于科技飞速发展的需要,大量学者投入到对时间尺度上的动力方程的研究中,并得到了许多有意义的结果。其中,关于探究动力方程解的振动性是当前比较热门的研究课题之一。本文受到前辈们研究的启发,采用广义Riccati变换、不等式技巧、Young不等式变形以及函数平均法等不同的技巧来研究几类时间尺度上具有偏差变元的三阶动力方程的振动性,针对现有参考文献中的结果进行推广以及改进,相应地给出具体的实例来证明所得结论的有效性。主要内容如下:第一章,主要介绍课题的研究意义和国内外的研究进展,并对论文的结果安排做出简要阐述。第二章,采用不同以往的广义Riccati变换进行降阶,同时考虑不等式变形,获得时间尺度上具有时滞变元的三阶非线性动力方程的几个不同类型的振动准则。第三章和第四章,从两种不同的角度进行思考,分别探讨时间尺度上具有次线性中立项和时滞变元的Emden-Fowler型动力方程的振动性。第三章,在前人研究的启发下,讨论在正则和非正则情况下方程振动的两个充分条件。第四章,通过引入泰勒单项式,借助不等式关系推得方程振动的新定理。第五章,采用双Riccati变换和不等式技巧,探究时间尺度上具有混合偏差变元的三阶Emden-Fowler型动力方程的振动性,通过对系数不同正则性讨论,证得方程振动的几个充分条件。第六章,对全文中的主要研究内容进行概况性总结,并根据之前的工作对未来的研究方向进行展望。
冯丽梅[2](2020)在《几类分数阶脉冲微分方程的振动性和稳定性》文中认为分数阶微分方程是整数阶微分方程到任意(非整数)阶微分方程的推广.除了数学领域以外,粘弹性、电化学、物理学、控制系统、多孔介质、电磁学等方面都涉及到了分数阶微分方程,许多学者致力于研究这类方程的定性性质,特别地,对于其振动性和稳定性的研究尤为重要.脉冲现象是对一个状态在短暂时间内受到干扰的实际演变过程,广泛存在于理论物理、生物技术、经济、药物动力学、种群生态学等各种应用领域中.脉冲微分系统引起微分系统领域学者专家的重视与兴趣,对其研究日益活跃,已逐渐成为非线性微分系统研究领域的国际热点.本文利用不等式技术、Riccati变换、分析特征方程实根等方法研究了几类分数阶脉冲方程的振动性和稳定性,具体安排如下:第一章,介绍了分数阶脉冲微分方程振动性和稳定性的意义、应用与研究背景.第二章,研究了二阶中立型差分方程解的广义零点分布,利用经典不等式、特定函数序列和对应的一阶差分不等式的非增解,给出了振动解广义零点分布的一些新估计,推广和改进了一些已知结果.第三章,考虑了中立型微分方程的振动性.首先考虑具有非规范型算子的三阶中立型微分方程的振动性.通过建立Kneser解不存在的充分条件,结合方程几乎振动的结果,建立了方程振动的充分条件.然后,利用经典不等式、比较原理和Riccati变换,研究二阶混合Emden–Fowler型微分方程的振动性,得到了方程振动的充分条件.第四章,通过建立Conformable分数阶微积分的性质,研究了Conformable分数阶微分方程的振动性.本章,分别用Gronwall不等式、Riaccti变换和比较原则研究了三类分数阶微分方程的振动性:具有有限个滞量的分数阶微分方程、中立型分数阶微分方程和带阻尼项的分数阶微分方程,得到了三类方程振动的充分条件.第五章,考虑了脉冲微分方程的振动性.首先考虑Caputo分数阶脉冲微分方程,利用经典不等式和Bihari引理,得到了方程振动的充分条件.然后,利用分数阶Ricatti变换,研究Riemann–Liouville分数阶脉冲微分方程的振动性,给出了方程振动的充分条件,并找出使系统的振动性改变的脉冲条件.最后研究了脉冲微分方程的区间振动性,通过估计未知函数y(t)与y(t-?(t))的比值,给出了方程振动的充分条件.第六章,研究了Caputo分数阶分布时滞微分方程的稳定性和振动性,利用Caputo分数阶微分方程常数变易公式和Mittag–Leffler函数的半群性质将分数阶微分方程的研究转化为高阶差分方程的研究,从而得到方程稳定和振动的充分必要条件.第七章,总结了本文的主要结果,并明确了今后的研究目标.
杜亚洁[3](2020)在《几类带有奇性的奇摄动问题解的渐近性质》文中研究指明本文主要利用匹配渐近展开法和微分不等式理论研究若干带有奇性的奇摄动问题。本文主要包括三个部分:第一章绪论部分介绍了本文的研究背景、研究目的,并综述了相关的预备知识。第二章研究了方程的次高阶导数前带有奇性的二阶线性奇摄动边值问题,研究结果表明此类问题具有重边界层现象。并且利用匹配渐近展开法构造出了该方程的形式渐近解,同时,用微分不等式理论证明了渐近解的一致有效性。第三章研究了具有奇性且具有重退化根的一阶非线性初值奇摄动问题。研究结果表明此类问题在边界层处也具有重边界层现象。第四章研究了一类非线性时滞奇摄动边值问题,这类问题的奇性位于区间内部某待定点。研究结果表明此类问题具有激波现象。同时利用匹配渐近展开法构造出了解的形式渐近展开式,并用微分不等式理论证明了形式解的一致有效性。
张燕燕[4](2020)在《时间尺度上三阶中立型动力方程的振动性研究》文中研究表明伴随着科学技术的进步,由时间尺度上时滞动力方程描述的数学模型在控制工程、物理学、海洋学、光学、生物环境与医学等工程领域具有广泛的应用,其定性性质的研究也得到了迅速发展,因此受到了国内外数学研究者的广泛关注。本文主要考察关于时间尺度上几类三阶时滞动力方程的振动性,建立了所研究方程的一些新的振动准则,已有文献中的一些结果得到了推广和完善。第一章介绍时间尺度上三阶动力方程振动性的研究背景、国内外研究现状、时间尺度上微积分的理论知识和本文主要研究内容。第二章研究了时间尺度上一类三阶中立型时滞动力方程的振动性和渐近性,考虑中立项系数为正的情形,建立了该类方程振动性和渐近性的几个新判别准则,推广改进和统一了该类微分方程和差分方程的有关结果,并给出了具体例子以说明本章主要结论的效果。第三章考虑第二章所研究方程中立项系数为负的情况,利用Riccati变换和不等式技巧,受已有文献的启发,得出了几个新的判定准则并给出具体例子对所得结果进行论证。第四章研究时间尺度上一类三阶非线性中立型分布时滞动力方程的振动性,利用广义Riccati变换和不等式技巧,建立了保证方程每一个解振动或者收敛到零的充分条件,同时也给出了例子对所得结论加以说明,已有文献的结果也得以丰富和推广。第五章总结了全文的研究内容,分析了在研究过程中存在的一些问题,并展望了未来的研究方向。
隋莹[5](2019)在《时间尺度上具有偏差变元的高阶动态方程的振动性》文中研究表明随着科学技术的发展,时间尺度上动态方程的研究得到迅速发展,已成为一个重要的研究领域,具有广泛的理论意义及重要的研究价值,受到了国内外学者的广泛关注.这不但是其自身理论发展的要求,也是物理学、力学、化工、通信、控制过程等应用领域发展的需求.本文主要研究时间尺度上具有偏差变元的高阶动态方程的振动性,分别对时滞动态方程、超前型动态方程和混合型动态方程的振动性进行研究,获得所研究方程的一些新的振动准则.第一章简要介绍时间尺度上具有偏差变元的高阶动态方程振动性的一些研究背景与发展现状.第二章考虑二阶非线性中立型时滞动态方程的振动性,其中在2.1节研究时间尺度上具有非线性中立项的二阶动态方程的振动性.在2.2节研究时间尺度上Emden-Fowler型非线性中立型时滞动态方程的振动性.利用Riccati变换和不等式技巧,得到方程的一些新的振动性和渐近性的判定定理.第三章研究时间尺度上带有阻尼项的三阶时滞动态方程的振动性.由时间尺度上无阻尼项的二阶动态方程的振动性,我们给出三阶动态方程振动新的刻画.我们还利用Riccati变换技术和积分均值法对动态方程的振动性进行了研究.第四章考虑超前型动态方程的振动性,给出时间尺度上具有超前变量的二阶中立型动态方程的振动准则.基于新的比较定理给出方程振动的一些新的结果,使我们能够将二阶方程的振动问题简化为一阶方程的振动问题.第五章考虑混合型动态方程的振动性,其中在5.1节研究时间尺度上具有混合型偏差变元和阻尼项的三阶非线性动态方程的振动性.利用Riccati变换、积分均值法和比较定理,给出了方程振动性的一些新判据.在5.2节研究时间尺度上具有偏差变元的二阶中立型动态方程的振动性.利用不等式技术和Riccati变换,给出方程振动新的准则,推广和改进了二阶动态方程振动的许多已知结果.第六章总结了全文的研究内容,分析了存在的问题,并展望了未来的研究方向.
邹敏[6](2019)在《几类偏微分方程振动性质及一维浅水波方程的Entropy-TVD格式》文中提出在当代,微分方程无处不在,各个科学领域的研究都围绕着微分方程模型.为了与实际相符,模型形式日趋复杂,比如地震波波动模型.只有经典的原始的微分方程才可以求得解析解,对于大部分地震波波动模型目前只能简化以后进行数值模拟.随着研究的深入,对于更复杂的地震波传播模型,在数值模拟不易进行时,考虑研究解的定性理论,也就是不求解直接研究解的分布和性态,从而探讨地震波的传播特征.方程解的振动性是微分方程定性理论的重要分支.本文的研究内容分为两个部分,第一部分是在常微分方程解的振动性的基础上讨论了中立型时滞脉冲偏微分方程和方程组、分数阶脉冲偏微分方程和分数阶脉冲时滞偏微分方程组解的振动性.在振动性的讨论中,利用平均值方法将偏微分方程转化为常微分方程或者不等式,从而得到偏微分方程解的振动性,并尝试将振动性的研究运用于各向同性声波方程.在分数阶偏微分方程振动性的讨论中,分别利用变量代换以及分数阶导数定义与Γ函数的关系两种不同的方法将分数阶转化为整数阶.第二部分,将Entropy-TVD格式推广至一维浅水波方程,并利用三个数值实例验证了Entropy-TVD格式的有效性,并将这个格式与标准的Godunov格式在分辨率、数值精度阶数和计算成本等方面进行了比较.论文取得的主要成果和结论如下:(1)本文研究了两类时滞脉冲偏微分方程及方程组的振动性.利用平均值法、格林公式和边界条件将所要研究的非线性脉冲时滞双曲方程边值问题解的振动性转化成二阶脉冲微分不等式解的振动问题,接着利用Riccati变换将这个二阶脉冲微分不等式降为一阶,利用辅助函数得到所求边值问题解振动的充分条件.在研究一类中立型脉冲时滞抛物系统在两类边界条件下解的振动性时,首先利用平均值法、格林公式、边界条件以及垂直相加法将脉冲时滞偏微分方程组转化为脉冲时滞常微分不等式组.接着利用变量代换来处理脉冲项,将复杂的分段连续情形转化为连续的状态来考虑,将所研究的问题转化为普通一阶常微分不等式解的振动问题.这样的处理可以极大限度地让已有的大量的一阶常微分方程或者不等式解的振动理论得到推广应用,使得研究空间更为广泛.尝试将微分方程振动理论运用于各向同性声波方程中,并得到结论.(2)基于分数阶微分方程在反常扩散、多孔介质力学、非牛顿流体力学等学科中的广泛应用,本文讨论了一类分数阶脉冲偏微分方程和一类分数阶脉冲时滞偏微分系统解的振动性.基于分数阶导数给研究带来的困难,本文采用两种不同的方法将分数阶偏导数转化为整数阶导数,这样就可以利用已有的整数阶微分方程解的振动理论处理分数阶微分方程解的振动性.本文采用的第一种方法是直接利用Γ函数进行变量代换,第二种方法是利用Modified Riemann-Liouville分数阶导数与Γ函数之间的关系.对于转化之后的微分方程,综合应用Riccati变换和微分不等式,得到了这两类分数阶脉冲偏微分方程在不同边界条件下解的振动准则.(3)本文将Entropy-TVD格式推广至一维浅水波方程.首先详细描述了Entropy-TVD格式,介绍了这个格式的一些性质然后运用于一维浅水波方程.给出了三个数值实例,表明了Entropy-TVD格式的有效性,并研究了Entropy-TVD格式的数值精度阶数和计算成本.Entropy-TVD格式比标准Godunov格式减少了数值耗散,具有更好的分辨率.为了提高线性特征场和非线性特征场的精确度,本文还建立了两个HS重构并将深度和速度作为两片常函数.Entropy-TVD格式包含四个数值实体,即数值熵、数值速度、深度和流量.文中验证了这个格式保留了深度和流量守恒,而且满足熵条件.本论文的创新之处主要表现在以下三个方面:(1)在对偏微分方程解的振动性的讨论中,利用Green公式的推导更好地处理了非线性项,有助于处理非线性地震波波动方程.利用Riccati变换对所研究的二阶常微分方程组进行降阶,使研究更为简便.利用变量代换将分段连续函数转化为连续函数,更有效地处理了脉冲项.这样可以处理更多的存在多种突发扰动的系统.将振动理论运用于声波方程,为研究复杂介质中或者更复杂的比如带有脉冲和时滞的波动模型提供理论基础.(2)在对分数阶微分方程的讨论中,其中分数阶导数的定义采用Modified Riemann-Liouville分数阶导数,修正了原先推导中的漏洞.目前,在对分数阶微分方程解的振动性的讨论中分数阶偏微分方程并不多见,带脉冲时滞的方程少之又少,基本上没有对偏微分方程组进行讨论.本文利用整数阶变量代换的方法处理了所讨论方程中的脉冲项,并利用垂直相加法得到了分数阶脉冲时滞偏微分方程组解的振动性.(3)本文将一阶精确Entropy-TVD格式推广到了一维浅水波方程,为了提高线性特征场和非线性特征场的精确度,建立了两个HS重构并把深度和速度作为两片常函数.这个格式包含四个数值实体,即数值熵、数值速度、深度和流量.Entropy-TVD格式比标准Godunov格式减少了数值耗散,具有更好的分辨率.(4)本文将熵格式推广到地下水溶质运移方程,首先采用分裂方法将地下水溶质运移方程分成对流方程和弥散方程,对流方程是一个双曲型方程,利用熵格式求解,弥散方程的空间离散用二阶中心格式离散时间离散用简单的向前差分.通过数值试验,对不同对流强度的地下水溶质运移方程进行了数值计算,计算结果表明熵格式没有出现过量问题,没有出现非物理振荡,数值弥散小,特别适合强对流问题的数值计算.
陈洁[7](2019)在《几类脉冲中立型微分方程的振动性》文中研究指明本文主要讨论了几类脉冲中立型微分方程所有解的振动性准则,全文共五章.第一章为绪论部分.简述了脉冲中立型微分方程以及振动问题的研究背景与现状,并且介绍了相关定义和本文的主要工作.第二章对一类具有正负系数的一阶脉冲中立型微分方程进行了研究,给出了这类含有脉冲条件的中立型微分方程所有解振动的条件,并且提供了两个说明文章结果的例子.第三章对一类欧拉―中立型脉冲微分方程的振动性情况进行研究,在上一章方法的基础上进行改变,探讨出了具有欧拉形式的脉冲中立型微分方程所有解振动条件,提供了一个说明文章结果的例子.第四章对一类具有正负系数的二阶脉冲中立型微分方程的振动情况进行研究.通过比较定理,得到了二阶脉冲微分方程的解等价于相应的二阶微分方程的解,并且得到了具有正负系数的二阶脉冲微分方程所有解振动的条件,提供了两个说明文章结果的例子.第五章对本文研究内容以及仍存在的不足之处进行总结,并对下一步的研究工作做出展望.
杨甲山[8](2018)在《时间测度链上动力方程振动性的进展》文中指出叙述了时间测度链上的基本概念及动力方程的基本理论以及动力方程振动性的最新进展,阐述了作者研究所得的一些最新成果,给出了应用实例,同时也提出了值得进一步研究的领域.
李会[9](2017)在《时滞动力方程的振动性与非振动性》文中认为振动理论的研究始于18世纪的Newton时代.自上世纪80年代以来,随着研究的不断深入,无论是线性微分方程还是非线性微分方程,关于振动理论的研究内容和研究方法都得到不断的丰富和发展,尤其在近几十年,取得了大量的研究成果.振动理论作为微分方程三大定性理论之一,在控制学、经济学、生态学以及生命科学等领域应用广泛,因此,研究微分方程的振动性与其控制问题是十分有意义的.由于时滞动力方程能充分考虑到事物的历史、现时对未来状态变化的影响,与传统的微分方程相比,能更深刻、更精确地反映事物的变化规律,揭示事物的本质特征.时滞动力方程出现于自然科学和工程技术等诸多领域,比如,时滞网络系统的动力行为、人口动力学以及稳定性理论等.时滞动力方程因其在实际问题以及数学理论本身上的巨大影响,其动力学问题作为极具挑战性的研究课题一直以来都受到人们的广泛关注.时滞动力方程的振动理论是时滞动力方程理论的中心内容之一,也是定性理论的一个重要组成部分.由于受到时滞项的影响,时滞动力方程振动理论将会更加复杂而且更加具有理论和实际意义.本文主要利用各类不动点定理、不等式技巧、比较定理、Riccati变换以及特征值和特征函数的方法研究了几类时滞动力方程振动解与非振动解的定性性质,给出了振动解与非振动解的存在性、唯一性、振动准则以及方程振动解的相邻零点之间距离上界的估计,推广并改进了已有结果.本文的主要内容如下:第一章,简要概述了时滞动力方程振动性与非振动性的研究背景与发展现状,同时介绍了本文的主要工作.第二章,研究了二阶中立型时滞微分方程振动解的存在性.通过对中立系数的适当限制并且利用Krasnoselskii不动点定理以及不等式技巧得到该类方程振动解存在性的几个充分条件.第三章,研究了时间尺度上时滞动力方程非振动解的存在性及其分类.首先利用Schauder-Tychonoff不动点定理以及H?lder不等式等方法研究了一类时间尺度上二阶超线性Emden-Fowler型动力方程非振动解的存在性及其分类,给出了振动解与非振动解存在的充分必要条件;然后利用Banach压缩映像原理给出了具有正负项的二阶混合中立型时滞微分方程、高阶非线性混合中立型时滞微分方程以及具有分布式滞量的高阶混合微分方程非振动解的存在唯一性结果.第四章,研究了二阶非线性中立型时滞动力方程以及具有强迫项的非线性中立型分数阶偏微分系统的振动.利用比较定理、Riccati变换、相应的一阶微分不等式的相关性质、不等式技巧以及特征值和特征函数的方法,得到这两类方程的振动准则,对已有结果进行了改进和推广.第五章,研究了一类二阶非线性中立型时滞微分方程相邻零点之间的距离问题.利用不等式技巧、非线性分析以及构造新的函数迭代序列的方法,得到其振动解相邻零点之间距离的上界,对方程解的刻画更为精细.第六章,对本文的研究内容和主要结果进行了归纳和总结,并对今后的研究工作进行了展望.
刘轶[10](2017)在《一类高阶泛函微分方程解的渐近行为》文中研究表明微分方程在物理学、力学、生物学、工程学、经济学等众多领域有着广泛的应用.而微分方程的振动理论作为微分方程稳定性理论中的重要分支,近几十年来也得到了重要的发展,许多学者对微分方程振动理论进行了研究和探索,推广改进了一些结论,不仅具有重要的理论意义,而且也具有较高的实用价值.在本篇硕士论文中,我们运用Philos型积分平均,广义的Riccati变换和代数不等式理论等方法,研究了一类高阶时滞泛函微分方程,获得了不同的假设情形下系统解振动的充分性判据.第一章,简要介绍了泛函微分方程的研究历史背景与国内外的研究现状;第二章,介绍了泛函微分方程振动性的相关定义,基本定理和重要的代数不等式;第三章,主要探究n阶(n≥3)非线性中立型微分方程在β≠1,(?)条件下的振动行为,获得几个新的振动准则,改进推广了[37],[59],[60]参考文献的结果;第四章,主要探究n阶(n≥3)中立型泛函微分方程在(?)限制条件下的振动行为,获得几个新的振动准则,推广、改进了[37],[38]参考文献的结果;
二、一类二阶非线性摄动微分方程的振动性(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、一类二阶非线性摄动微分方程的振动性(论文提纲范文)
(1)几类时间尺度上具有偏差变元三阶动力方程的振动性研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 论文结果安排 |
第二章 具有复杂因子的三阶非线性时滞动力方程的振动性 |
2.1 研究背景 |
2.2 主要结果与证明 |
2.3 应用举例 |
第三章 具有次线性中立项的三阶Emden-Fowler方程的振动性 |
3.1 研究背景 |
3.2 主要结果与证明 |
3.3 应用实例 |
第四章 一类具次线性中立型三阶Emden-Fowler方程的振动性 |
4.1 研究背景 |
4.2 主要结果与证明 |
4.3 应用举例 |
第五章 具有混合偏差变元的三阶Emden-Fowler方程的振动性 |
5.1 研究背景 |
5.2 主要结果与证明 |
5.3 应用举例 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
攻读硕士学位期间发表论文 |
致谢 |
(2)几类分数阶脉冲微分方程的振动性和稳定性(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 振动性与稳定性的研究背景 |
1.1.1 中立型方程的振动性 |
1.1.2 分数阶微分方程的振动性 |
1.1.3 脉冲分数阶微分方程的振动性 |
1.2 定义及假设 |
1.3 内容安排 |
第二章 二阶非线性中立型时滞差分方程的零点分布 |
2.1 预备知识 |
2.2 主要内容 |
2.3 应用举例 |
2.4 总结展望 |
第三章 中立型微分方程的振动性 |
3.1 具有非规范型算子的三阶中立型微分方程的振动性 |
3.1.1 预备知识 |
3.1.2 主要内容 |
3.1.3 应用举例 |
3.1.4 总结展望 |
3.2 二阶混合Emden–Fowler型微分方程的振动性 |
3.2.1 预备知识 |
3.2.2 主要内容 |
3.2.3 应用举例 |
3.2.4 总结展望 |
第四章 Conformable分数阶微分方程的振动性 |
4.1 预备知识 |
4.2 具有有限个滞量的分数阶微分方程的振动性 |
4.2.1 主要内容 |
4.2.2 应用举例 |
4.3 中立型分数阶微分方程的振动性 |
4.3.1 主要内容 |
4.3.2 应用举例 |
4.4 带阻尼项的分数阶微分方程的振动性 |
4.4.1 主要内容 |
4.4.2 应用举例 |
4.5 总结展望 |
第五章 脉冲微分方程的振动性 |
5.1 Caputo分数阶脉冲微分方程的振动性 |
5.1.1 预备知识 |
5.1.2 主要内容 |
5.1.3 应用举例 |
5.2 Riemann–Liouville分数阶脉冲微分方程的振动性 |
5.2.1 预备知识 |
5.2.2 主要内容 |
5.2.3 由脉冲引起振动的举例 |
5.3 脉冲微分方程的区间振动准则 |
5.3.1 预备知识 |
5.3.2 主要内容 |
5.3.3 举例说明 |
第六章 分数阶分布时滞微分方程的稳定性 |
6.1 预备知识 |
6.2 主要内容 |
6.3 应用举例 |
6.4 总结展望 |
第七章 结论与展望 |
7.1 总结 |
7.2 展望 |
参考文献 |
致谢 |
附录 |
(3)几类带有奇性的奇摄动问题解的渐近性质(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与进展 |
1.2 研究目的 |
1.3 预备知识 |
第二章 带有奇性的二阶线性奇摄动边值问题 |
2.1 形式渐近解的构造 |
2.2 形式渐近解的一致有效性 |
2.3 实例仿真 |
第三章 具有奇性的一阶非线性奇摄动问题 |
3.1 形式渐近解的构造 |
第四章 一类非线性时滞奇摄动边值问题的激波解 |
4.1 形式渐近解的构造 |
4.2 形式渐近解的一致有效性 |
第五章 总结与展望 |
参考文献 |
发表成果 |
致谢 |
(4)时间尺度上三阶中立型动力方程的振动性研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 时间尺度上动力方程振动性的研究背景及意义 |
1.2 时间尺度上微积分的基本知识 |
1.3 论文的主要结构及内容 |
第二章 具非负中立项的三阶时滞动力方程的振动性 |
2.1 研究背景 |
2.2 重要引理 |
2.3 振动准则与证明 |
2.3.1 Leighton型振动准则 |
2.3.2 Kamenev型振动准则 |
2.3.3 Philos型振动准则 |
2.4 应用与小结 |
第三章 具非正中立项的三阶时滞动力方程的振动性 |
3.1 研究背景 |
3.2 重要引理 |
3.3 振动准则与证明 |
3.3.1 Leighton型振动准则 |
3.3.2 Kamenev型振动准则 |
3.3.3 Philos型振动准则 |
3.4 应用与小结 |
第四章 具分布时滞的三阶中立型动力方程的振动性 |
4.1 研究背景 |
4.2 重要引理 |
4.3 振动准则与证明 |
4.4 应用与小结 |
第五章 总结与展望 |
5.1 主要研究内容与创新点 |
5.2 研究展望 |
参考文献 |
攻读硕士学位期间发表论文 |
致谢 |
(5)时间尺度上具有偏差变元的高阶动态方程的振动性(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 时间尺度上具有偏差变元的高阶动态方程振动性的研究背景 |
1.2 论文内容安排 |
第二章 二阶非线性中立型时滞动态方程的振动性 |
2.1 时间尺度上具有非线性中立项的二阶动态方程的振动性 |
2.1.1 研究背景 |
2.1.2 预备引理 |
2.1.3 主要内容 |
2.1.4 应用举例 |
2.2 时间尺度上Emden-Fowler型非线性中立型时滞动态方程的振动性 |
2.2.1 研究背景 |
2.2.2 预备引理 |
2.2.3 主要内容 |
2.2.4 举例与小结 |
第三章 三阶非线性时滞动态方程振动性 |
3.1 研究背景 |
3.2 预备引理 |
3.3 Riccati变换方法 |
3.4 积分均值法 |
3.5 应用举例 |
3.6 总结与展望 |
第四章 超前型动态方程的振动性 |
4.1 研究背景 |
4.2 预备引理 |
4.3 主要结果 |
4.4 总结与展望 |
第五章 混合型动态方程的振动性 |
5.1 时间尺度上具有混合型偏差变元和阻尼项的三阶动态方程的振动性 |
5.1.1 研究背景 |
5.1.2 预备引理 |
5.1.3 主要内容 |
5.1.4 应用举例 |
5.1.5 总结与展望 |
5.2 时间尺度上具有偏差变元的二阶中立型动态方程的振动性 |
5.2.1 研究背景 |
5.2.2 预备引理 |
5.2.3 主要内容 |
5.2.4 应用举例 |
5.2.5 总结与展望 |
第六章 总结与展望 |
6.1 论文内容总结与创新点 |
6.2 研究展望 |
参考文献 |
致谢 |
附录 |
(6)几类偏微分方程振动性质及一维浅水波方程的Entropy-TVD格式(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题的目的和意义 |
1.2 国内外研究现状、发展趋势及存在问题 |
1.2.1 地震波波动模型研究现状 |
1.2.2 振动理论研究现状 |
1.2.3 分数阶微分方程研究现状 |
1.2.4 浅水波模型的研究现状 |
1.2.5 双曲守恒律方程数值模拟的研究现状 |
1.2.6 对流—弥散方程数值模拟的研究现状 |
1.2.7 存在问题与发展趋势 |
1.3 主要研究内容和研究工作 |
1.4 论文主要成果及创新点 |
1.5 论文组织结构 |
第二章 几类偏微分方程的振动性 |
2.1 里卡蒂方法研究带泛函参数的非线性脉冲时滞双曲方程的振动性 |
2.1.1 第一类边界条件下方程解的振动性 |
2.1.2 第三类边界条件下方程解的振动性 |
2.1.3 应用举例 |
2.2 中立型脉冲时滞抛物系统解的振动性 |
2.2.1 第三类边界条件下系统解的振动性 |
2.2.2 第一类边界条件下系统解的振动性 |
2.2.3 应用举例 |
2.3 声波方程解的振动性 |
2.4 小结 |
第三章 分数阶脉冲偏微分方程及脉冲时滞偏微分系统解的振动性 |
3.1 分数阶积分与分数阶导数 |
3.1.1 Riemann-Liouville分数阶积分与分数阶导数 |
3.1.2 Caputo型分数阶导数 |
3.2 分数阶脉冲偏微分方程的振动性 |
3.2.1 第三类边界条件下方程解的振动性 |
3.2.2 第一类边界条件下方程解的振动性 |
3.3 分数阶脉冲时滞偏微分系统解的振动性 |
3.3.1 第三类边界条件下系统解的振动性 |
3.3.2 第一类边界条件下系统解的振动性 |
3.3.3 应用举例 |
3.4 小结 |
第四章 一维浅水波方程的Entropy-TVD格式 |
4.1 浅水波方程的Entropy-TVD格式 |
4.1.1 Entropy-TVD格式的描述 |
4.1.2 HS的计算应用举例 |
4.2 Entropy-TVD格式的性质 |
4.3 数值算例 |
4.4 小结 |
第五章 利用熵格式计算地下水溶质运移方程 |
5.1 熵格式的描述 |
5.2 数值试验和结果分析 |
5.3 小结 |
第六章 结论与建议 |
6.1 结论 |
6.2 建议 |
致谢 |
参考文献 |
(7)几类脉冲中立型微分方程的振动性(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 本文工作 |
2 具有正负系数的一阶脉冲中立型微分方程的振动性 |
2.1 引言和概念 |
2.2 引理及证明 |
2.3 主要结论 |
2.4 应用举例 |
2.5 本章小结 |
3 脉冲欧拉―中立型微分方程的振动性 |
3.1 概述 |
3.2 若干引理 |
3.3 振动性的主要结果 |
3.4 主要应用 |
4 具有正负系数的二阶脉冲中立型微分方程的振动性 |
4.1 引言及基本概念 |
4.2 预备知识 |
4.3 主要结论及证明 |
4.4 应用举例 |
4.5 本章小结 |
5 结论与展望 |
参考文献 |
简历 |
(8)时间测度链上动力方程振动性的进展(论文提纲范文)
1 一些基本概念 |
2 二阶动力方程的振动性进展 |
3 其他动力方程的振动性进展 |
(9)时滞动力方程的振动性与非振动性(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 时滞动力方程振动理论的研究背景 |
1.2 本文的主要内容 |
第二章 二阶中立型时滞微分方程振动解的存在性 |
2.1 研究背景 |
2.2 预备知识 |
2.3 主要结果 |
2.4 应用举例 |
2.5 本章小结 |
第三章 时间尺度上时滞动力方程非振动解的存在性及其分类 |
3.1 时间尺度上超线性Emden-Fowler型动力方程的非振动解 |
3.1.1 研究背景 |
3.1.2 预备知识 |
3.1.3 主要结果 |
3.1.4 应用举例 |
3.2 具正负项的二阶混合中立型时滞微分方程非振动解的存在性 |
3.2.1 研究背景 |
3.2.2 预备知识 |
3.2.3 主要结果 |
3.2.4 应用举例 |
3.3 高阶非线性混合中立型时滞微分方程非振动解存在性 |
3.3.1 研究背景 |
3.3.2 主要结果 |
3.3.3 应用举例 |
3.4 具有分布式滞量的高阶混合微分方程的非振动性 |
3.4.1 研究背景 |
3.4.2 主要结果 |
3.4.3 应用举例 |
3.5 本章小结 |
第四章 中立型时滞动力方程的振动定理 |
4.1 二阶非线性中立型时滞动力方程的振动定理 |
4.1.1 研究背景 |
4.1.2 预备知识 |
4.1.3 主要结果 |
4.1.4 应用举例 |
4.2 具有强迫项的非线性中立型分数阶偏微分系统的强振动 |
4.2.1 研究背景 |
4.2.2 预备知识 |
4.2.3 主要结果 |
4.2.4 应用举例 |
4.3 本章小结 |
第五章 二阶非线性中立型时滞微分方程的零点分布 |
5.1 研究背景 |
5.2 预备知识 |
5.3 主要结果 |
5.4 应用举例 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 主要结论 |
6.2 创新点 |
6.3 进一步研究展望 |
参考文献 |
致谢 |
附录 |
(10)一类高阶泛函微分方程解的渐近行为(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 微分方程的背景及研究进展 |
1.2 国内外研究现状 |
1.3 本文工作和内容安排 |
第二章 相关定理 |
2.1 基本定义 |
2.2 基本定理 |
2.3 基本引理 |
第三章 一类高阶非线性中立型微分方程的振动行为 |
3.1 相关假设及定义 |
3.2 相关引理 |
3.3 主要结果 |
第四章 一类高阶中立型微分方程的振动行为 |
4.1 相关假设及定义 |
4.2 相关引理 |
4.3 主要结果 |
结论 |
参考文献 |
致谢 |
附录 |
四、一类二阶非线性摄动微分方程的振动性(论文参考文献)
- [1]几类时间尺度上具有偏差变元三阶动力方程的振动性研究[D]. 冯瑞华. 中北大学, 2021(09)
- [2]几类分数阶脉冲微分方程的振动性和稳定性[D]. 冯丽梅. 济南大学, 2020(01)
- [3]几类带有奇性的奇摄动问题解的渐近性质[D]. 杜亚洁. 安徽工业大学, 2020(06)
- [4]时间尺度上三阶中立型动力方程的振动性研究[D]. 张燕燕. 中北大学, 2020(09)
- [5]时间尺度上具有偏差变元的高阶动态方程的振动性[D]. 隋莹. 济南大学, 2019(01)
- [6]几类偏微分方程振动性质及一维浅水波方程的Entropy-TVD格式[D]. 邹敏. 中国地质大学, 2019(05)
- [7]几类脉冲中立型微分方程的振动性[D]. 陈洁. 杭州师范大学, 2019(01)
- [8]时间测度链上动力方程振动性的进展[J]. 杨甲山. 安徽大学学报(自然科学版), 2018(01)
- [9]时滞动力方程的振动性与非振动性[D]. 李会. 济南大学, 2017(03)
- [10]一类高阶泛函微分方程解的渐近行为[D]. 刘轶. 长沙理工大学, 2017(01)