新型磷酸盐两性表面活性剂的合成与应用

新型磷酸盐两性表面活性剂的合成与应用

一、新型磷酸酯两性表面活性剂的合成与应用研究(论文文献综述)

王鹏飞[1](2021)在《中国洗涤技术发展研究 ——以中国日用化学工业研究院为中心》文中研究说明洗涤在人类文明进程中扮演了重要的角色,洗涤技术是人类保持健康、维持生存的必然选择,同时也是追求美好生活、展示精神风貌的重要方式。人类洗涤的历史与文明史一样悠久绵长,从4000多年前的两河流域到我国的先秦,无不昭示着洗涤与洗涤技术的古老。但现代意义上的洗涤及其技术,是以表面活性剂的开发利用为标志的,在西方出现于19世纪末,在我国则更是迟至新中国成立以后。前身可追溯至1930年成立的中央工业试验所的中国日用化学工业研究院是我国日化工业特别是洗涤工业发展史上最重要的专业技术研究机构,是新中国洗涤技术研发的核心和龙头。以之为研究对象和视角,有助于系统梳理我国洗涤技术的发展全貌。迄今国内外关于我国洗涤技术发展的研究,仅局限于相关成果的介绍或者是某一时段前沿的综述,且多为专业人员编写,相对缺乏科学社会学如动因、特征与影响等科技与社会的互动讨论;同时,关于中国日用化学工业研究院的系统学术研究也基本处于空白阶段。基于丰富一手的中国日用化学工业研究院的院史档案,本文从该院70年洗涤技术研发的发掘、梳理中透视中国洗涤技术发展的历程、动因、特征、影响及其当代启示,具有重要的学术意义和现实价值。在对档案资料进行初步分类、整理时,笔者提炼出一些问题,如:为何我国50年代末才决定发展此项无任何研发究经验的工业生产技术?在薄弱的基础上技术是如何起步的?各项具体的技术研发经历了怎样的过程?究竟哪些关键技术的突破带动了整体工业生产水平的提升?在技术与社会交互上,哪些因素对技术发展路径产生深刻影响?洗涤技术研发的模式和机制是如何形成和演变的?技术的发展又如何重塑了人们的洗涤、生活习惯?研究主体上,作为核心研究机构的中国日用化学工业研究院在我国洗涤技术发展中起了怎样的作用?其体制的不断变化对技术发展产生了什么影响?其曲折发展史对我国今天日用化工的研发与应用走向大国和强国有哪些深刻的启示?……为了回答以上问题,本文以国内外洗涤技术的发展为大背景,分别从阴离子表面活性剂、其它离子型(非离子、阳离子、两性离子)表面活性剂、助剂及产品、合成脂肪酸等四大洗涤生产技术入手,以关键生产工艺的突破和关键产品研发为主线,重点分析各项技术研究中的重点难点和突破过程,以及具体技术研发之间的逻辑关系,阐明究竟是哪些关键工艺开发引起了工业生产和产品使用的巨大变化;同时,注重对相关技术的研发缘由、研究背景和社会影响等进行具体探讨,分析不同时期的社会因素如何影响技术的发展。经过案例分析,本文得到若干重要发现,譬如表面活性剂和合成洗涤剂技术是当时社会急切需求的产物,因此开发呈现出研究、运用、生产“倒置”的情形,即在初步完成技术开发后就立刻组织生产,再回头对技术进行规范化和深化研究;又如,改革开放后市场对多元洗涤产品的需求是洗涤技术由单一向多元转型的重要动因。以上两个典型,生动反映出改革开放前后社会因素对技术研发的内在导向。经过“分进合击”式的案例具体研究,本文从历史特征、发展动因和研发机制三个方面对我国洗涤技术的发展进行了总结,认为:我国洗涤技术整体上经历了初创期、过渡期、全面发展期和创新发展期四个阶段,而这正契合了我国技术研发从无到有、从有到精、从精到新不断发展演进的历史过程;以技术与社会的视角分析洗涤技术的发展动因,反映出社会需求、政策导向、技术引进与自主创新、环保要素在不同时代、不同侧面和不同程度共塑了技术发展的路径和走向;伴随洗涤领域中市场在研究资源配置中发挥的作用越来越大,我国洗涤技术的研发机制逐渐由国家主导型向市场主导型过度和转化。本文仍有一系列问题值得进一步深入挖掘和全面拓展,如全球视野中我国洗涤技术的地位以及中外洗涤技术发展的比较、市场经济环境下中国日用化学工业研究院核心力量的潜力发挥等。

陈雅雯[2](2021)在《含羧基两性型表面活性剂的合成及表面聚集性能研究》文中研究指明两性型表面活性剂包括不同结构的阴、阳离子亲水基团、碳原子数不同的疏水链和多样化的阴阳离子亲水基团联接链,这使得它们表现出更加丰富的自组织性能。两性型分子由于自身结构特点,而被广泛应用于各行各业中。本文以两性型表面活性剂为实验内容,自行设计合成了疏水链碳原子数m分别为12、14、16、18的磷酸酯钠两性型表面活性剂(D1、D2、D3、D4)和磺酸钠两性型表面活性剂(Q1、Q2、Q3、Q4)。主要研究内容如下:(1)以脂肪胺(CmH2m+1NH2,其中m=12,14,16,18)和丙烯酸(CH2=CHCOOH)进行第一步反应,合成产物A1~A4,以环氧氯丙烷(ECH)和磷酸二氢钠(NaH2PO4)进行第二步反应,合成中间体,最后向A1~A4中添加中间体制备产物D1~D4。并用FTIR、1H NMR、HRMS(ESI)对产物D1~D4的结构进行了表征。同时,以产物D4的合成为例,采用单因素实验法,通过铁氰化钾法测定了产物的产率,确定了较佳的反应条件:T为70℃,t为5h,n(环氧氯丙烷):n(十八按)为1.20。在此条件下,产物 D1~D4 产率分别为 78.75%、91.81%、81.59%、93.92%。采用吊环法测定了产物D1~D4在水溶液中的表面性能,在298.15K下,D1~D4的 CMC 分别为:5.34×10-4 mol/L、4.95×10-5 mol/L、1.43×10-5 mol/L、3.30×10-6 mol/L。γCMC 分别为:30.10 mN/m、29.08 mN/m、42.90 mN/m、45.56 mN/m。表面活性剂产物D2削弱γ的能力最强,ΓCMC最大,ACMC最小。通过κ-c曲线研究了产物D1~D4在温度为303.15K~343.15K范围内的CMC、β,并对产物D1~D4的热力学函数ΔGm0、ΔHm0、ΔSm0进行了计算,结果表明:CMC和β随温度的提升变化趋势相反,产物D1~D4聚集过程为自发进行放热过程,并且为熵主导的过程。芘荧光光谱实验表明,产物D2的平衡I1/I3值最小,聚集体内部微环境最小,形成聚集体的结构最紧密。通过铂金吊环法、电导率法、芘稳态荧光光谱法所得产物D1的CMC比较接近,而产物D2~D4的CMC差值较大。Λ-c1/2和dκdc-c1/2曲线揭示了具有较长疏水碳链长度的D2~D4溶液中存在预胶团现象,且较长疏水碳链的产物发生预胶束化是致使CMC出现偏差的原因。由Ea-c曲线图可知,产物D1的CMC位于最低点处,产物D2~D4溶液中预胶束团的存在,CMC出现在最低点的右侧附近。动态光散射技术发现,产物D1~D4聚集体的粒径随着浓度的增加(2CMC-10CMC-50CMC)表现出较好的规律性。通过分水实验和泡沫实验分别探讨了疏水链碳原子数对产物乳化性能和泡沫性能的影响。通过对产物D4进行乳化和拌和实验,结果表明产物D4属于快裂型。(2)以脂肪胺(CmH2m+1NH2,其中 m=12,14,16,18)、丙烯酸(CH2=CHCOOH)、有机磺酸钠为原料、异丙醇为溶剂,通过加成、季胺化反应合成了产物Q1~Q4。并用FTIR、1H NMR、HRMS(ESI)对产物Q1~Q4的结构进行了表征。利用铁氰化钾法确定了产物Q1~Q4在T=70℃,t=5h,摩尔比n=1.20条件下的产率,经测定,产率分别为:68.68%、46.32%、79.19%、73.98%。采用吊环法测定了产物Q1~Q4在水溶液中的表面性能,在298.15K下,产物Q1-Q4的CMC分别为:7.94×10-4mol/L、9.12×10-5mol/L、1.45×10-5 mol/L、8.96×10-6mol/L。γCMC分别为:28.16 mN/m、26.16mN/m、32.82 mN/m、38.45 mN/m。产物Q2降低γ的能力最强;疏水链碳原子数增多,产物Q1-Q4的ΓCMC增加,ACMC减小,pC20增加。通过κ-c曲线研究了产物Q1~Q4在温度为303.15K~343.15K范围内的CMC、β,并对产物Q1~Q4的热力学函数ΔGm0、ΔHm0、ΔSm0进行了计算,结果表明:CMC和β随温度的提升变化趋势相反,产物Q1~Q4聚集过程为自发进行放热过程,并且为熵主导的过程。芘荧光光谱实验表明,产物Q2的平衡I1/I3值最小,聚集体内部微环境最小,形成聚集体的结构最紧密。通过铂金吊环法、电导率法、芘稳态荧光光谱法所得产物Q1的CMC比较接近,而产物Q2~Q4的CMC差值较大。Λ-c1/2和dκ/dc-c1/2曲线揭示了具有较长疏水碳链长度的Q2~Q4溶液中存在预胶团现象,且较长疏水碳链的产物发生预胶束化是致使CMC出现偏差的原因。由Ea-c曲线图可知,产物Q1的CMC位于最低点处,产物Q2~Q4溶液中预胶束团的存在,CMC出现在最低点的右侧附近。动态光散射技术发现,产物Q1~Q4在浓度为2CMC、10CMC、50CMC时主要以囊泡的形式存在。通过分水实验和泡沫实验分别探讨了疏水链碳原子数对产物乳化性能和泡沫性能的影响。

赵文辉[3](2021)在《氨基酸型驱油用表面活性剂的设计合成与基础应用研究》文中进行了进一步梳理在现代工业化进程中,石油作为当今国家经济发展的压舱石,起到了强有力的支撑作用。“多煤、少油、贫气”的能源结构是我国依赖石油进口的客观事实,同时面对高温高盐、低渗透、高黏度油藏环境以及三次采油造成的环境污染等问题也给石油开采增添挑战。因此对于三次采油用表面活性剂的性能要求逐步提升,需综合考虑抗菌、易降解、高表面活性等方面性能。本课题以氨基酸表面活性剂的优异性能为依据,设计合成了系列氨基酸表面活性剂,并探讨了其在石油开采方面的应用价值。首先以长链脂肪醇为原料,通过柯林斯试剂氧化制备长链脂肪醛。然后由亚磷酸三乙酯和氯乙酸乙酯制备的磷叶立德中间体与长链脂肪醛经过维蒂希-霍纳尔反应制备α,β-不饱和羰基化合物。以七种氨基酸为原料经过氮杂-迈克尔加成反应得到以C-N键连接的一系列N-烷基氨基酸表面活性剂。最后以1,4-二溴丁烷、戊二醛桥联基团通过双分子亲核取代、Kabachnik-Fields反应制备了两种Gemini氨基酸表面活性剂。通过对系列氨基酸表面活性剂的性能研究表明:基于不同氨基酸残基的驱油剂表现出不同的性能,其中,组氨酸基表面活性剂的性能表现最佳,具有最低表面张力和临界胶束浓度,达到接触角平衡的时间最短,接触角最小。50000 ppm的Na Cl与单链型氨基酸表面活性剂水溶液使胜利原油达到超低界面张力(10-3m N/m)。Gemini氨基酸表面活性剂的性能明显优于单链型氨基酸表面活性剂,具有较低的表面张力、临界胶束浓度,良好的耐温性、抗盐性(非Ca2+、Mg2+)和普适性。

简婷[4](2021)在《聚乙二醇联结的Gemini脂肪醇磷酸酯的制备及其皮革加脂性能》文中提出脂肪醇磷酸酯是市场上一类重要的皮革化学品,其中Gemini脂肪醇磷酸酯表面活性剂也备受关注,该类精细化学品因其多功能、结合型功效在皮革湿加工研究中受到了广泛的重视,目前研究重点主要用于铬鞣革的加脂处理工序。本文以POC13为磷酸化试剂,合成了系列聚乙二醇联结的Gemini脂肪醇磷酸酯表面活性剂,研究了产物的基本物化性能,并将系列产物应用于绵羊皮铬鞣革的加脂处理工序,探讨了烷基链和连接链长度对皮革加脂的影响规律,旨在阐明产物结构与皮革加脂功效的相关性,为Gemini脂肪醇磷酸酯类皮革化学品的开发和应用提供理论依据。在本课题中,首先使用聚乙二醇(PEG-400、PEG-600、PEG-800、PEG-1000)与POCl3进行磷酸化反应,再添加正构脂肪醇(辛醇、十二醇、十六醇、十八醇)进行酯化反应,最后经水解、中和制备了四个系列的Gemini脂肪醇磷酸酯表面活性剂(简称m-400,m-600,m-800,m-1000,其中m=8,12,16,18)。实验结果表明:磷酸化反应的适宜温度为5℃,反应时间为6 h,n(POCl3):n(PEG)=2:1;酯化反应的适宜温度为30℃,反应时间为4h,n(POCl3):n(脂肪醇)=1:1。用重结晶法对产物进行提纯,并采用红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)表征产物结构,证明了反应形成的目标产物与预期结果的一致性。以系列产物的乳化力、乳液稳定性、乳液粒径、表面活性、润湿性、泡沫性以及聚集性等性能为评价指标,研究了产物分子结构中的烷基碳链和连接链长度对其基本表面活性的影响规律,结果表明:烷基碳数为8的系列产物的各项物化性能较佳,随着烷基碳链的增长,系列产物的粒径增大,表面张力值升高,乳化性、润湿性及泡沫稳定性等均呈下降趋势;随着连接链的增长,Gemini表面活性剂溶液形成的胶束呈现从层状到囊泡、椭球以及球形的增长趋势,表面张力值降低,乳化性、润湿性、泡沫稳定性均有所提高,m-800(m=8)可降低表面张力至26.3 mN/m。将系列Gemini磷酸酯表面活性剂应用于绵羊皮铬鞣革的加脂处理工序,探讨了产物结构对加脂皮革的柔软度、机械强度、疏水性、卫生性、抗静电性等性能的影响规律,结果表明:随着烷基碳链的增长,加脂皮革的柔软度、疏水性、机械强度等均逐渐提高,碳数为16的系列产物加脂性能优良;随着连接链的增长,加脂皮革的柔软度、疏水性、机械强度、透水汽性等均有所降低,抗静电性逐渐增强。综上,m-400(m=16)的皮革加脂性能较好,经其加脂的皮革柔软度为9.84 mm,抗张强度为39.97 N/mm2,撕裂强度可达47.14 N/mm,微观分析显示皮革纤维松散,纤维束排列整齐。将16-400与矿物油复配后的16-400Gemini磷酸酯类加脂剂作用的皮革性能得到进一步提高。

王文权,刘毅,张梦圆[5](2020)在《甜菜碱表面活性剂合成工艺的研究进展》文中提出介绍了羧基型、磷酸酯型和不同类型磺基甜菜碱表面活性剂的合成工艺,并简述了其在洗涤过程中的应用,旨在为后来的研究提供相关理论依据。

郝东艳[6](2020)在《基于咪唑型离子液体的两性聚合物加脂剂的制备与性能研究》文中研究表明鉴于目前制革过程中铬鞣所带来的环境污染问题,开发无铬生态皮革制造技术已成为近年来皮革工业中最重要的发展方向。但无铬生态有机鞣鞣革后降低了胶原纤维的正电性,导致传统铬鞣体系中配套的大部分阴离子染整材料结合位点减少(特别是赋予皮革柔软度等手感性能的加脂剂),由此导致染整材料的吸收和化学结合率显着下降,造成成品革出现败色及手感欠佳等问题,不能满足鞣制体系的发展新需求。因此,研究与有机无铬鞣剂相匹配的加脂剂将成为重要的发展方向。基于上述原因,本文主要以咪唑型离子液体、甲基丙烯酸二甲氨基乙酯、1,3-丙磺酸内脂、丙烯酸等为原料,通过自由基聚合反应和季铵化反应合成两性聚合物,再将其用于无铬非金属鞣制坯革加脂工序中,利用咪唑型离子液体绿色环保、分子结构的可设计性及抗菌性等优点以及基于其合成的两性聚合物分子结构中的阴、阳离子基团对坯革表面电荷进行调控,旨在改善后续阴离子湿整饰材料的适应性,同时赋予坯革抗菌功能。主要研究工作包括:(1)以溴化1-己基-3-乙烯基咪唑([HVIM]Br)、溴化1-辛基-3-乙烯基咪唑([OVIM]Br)、溴化1-癸基-3-乙烯基咪唑([DVIM]Br)和溴化1-十二烷基-3-乙烯基咪唑([DDVIM]Br)为单体,分别与甲基丙烯酸二甲氨基乙酯(DMAE)进行自由基聚合制备聚合物p(DMAE-co-[HVIM]Br)、p(DMAE-co-[OVIM]Br)、p(DMAE-co-[DVIM]Br)、p(DMAE-co-[DDVIM]Br)。考察了单体的配比、反应时间、引发剂用量等因素对合成条件的影响。通过红外光谱仪(FI-IR)、核磁共振氢谱仪(1H-NMR)、X-射线衍射仪(XRD)、表面张力仪、纳米粒度仪(DLS)等对聚合物进行结构与性能表征,证明了目标产物已被成功制备,且所制备的共聚物具有一定的表面活性,乳液粒径大小主要分布在67~400 nm。然后将聚合物与蓖麻油复配后用于绵羊白湿革加脂工序处理,通过扫描电镜(SEM)、超景深显微镜、热重分析仪(TG)、柔软度仪等仪器测定加脂后皮革的性能。结果表明:合成的加脂剂处理皮革后,其柔软度和物理机械性能均较未加脂有所提高。但和市售代表性加脂剂处理后的坯革相比,经其加脂后的皮革在柔软度及物理机械性能等方面还有待改善。(2)为了增强坯革的柔软度及聚合物与胶原纤维的结合能力,使用1,3-丙磺酸内酯分别对 p(DMAE-co-[HVIM]Br)、p(DMAE-co-[OVIM]Br)、p(DMAE-co-[DVIM]Br)、p(DMAE-co-[DDVIM]Br)共聚物进行季铵化改性合成四种两性聚合物。利用FT-IR、1H-NMR、凝胶渗透色谱(GPC)和XRD等分析证明两性聚合物具有预期的结构。GPC测得四种两性聚合物的数均相对分子质量分别为 Mn=6212 g/mol、Mn=4492 g/mol,Mn=4382 g/mol,Mn=4027 g/mol,两性聚合物的抗菌实验表明:四种聚合物都具有良好的抗菌效果。然后将两性聚合物与蓖麻油复配用于F-90有机无铬鞣制坯革的加脂应用实验结果表明:经两性p(DMAE-co-[DDVIM]Br)PS加脂剂处理后坯革,对染料的吸收率高达99.01%,染料浴液透明澄清,且坯革表面的K/S值(12.80)高于市售对比加脂剂处理后坯革表面的K/S值(4.47),同时基于两性聚合物加脂剂处理后的坯革其柔软度及物理机械性能较市售对比加脂剂都有所提高。(3)基于提高两性聚合物p(DMAE-co-[DDVIM]Br)PS的溶解性及解决丙烯酸树脂的败色问题。以丙烯酸(AA)、DMAE、溴化-1-十二烷基-3-乙烯基咪唑([DDVIM]Br)为原料,通过自由基反应合成了两性聚合物(pADD),FT-IR、1H-NMR、GPC、Zeta电位仪和表面张力仪等检测结果表明:两性聚合物具有预期的结构,其数均相对分子质量为7414,表面张力为22.9 mN/m,平均乳液粒径为642.5 nm,离子特性的检测和等电点(8.91)检测均证明了所合成的目标产物具有明显的两性特征。将两性聚合物pADD与蓖麻油复配制备出两性聚合物加脂剂pADD-1,将其应用于F-90鞣制的绵羊白湿皮进行加脂实验对比,结果表明:两性聚合物加脂剂吸收率高达95.3%,较市售对比加脂剂吸收率提高19.8%,染色后坯革颜色鲜艳,不存在败色问题,同时该两性聚合物加脂剂具有很好的抗菌功能,其抑菌圈大小为52.1mm,未加抑菌材料的抑菌圈大小为20 mm。提出有机无铬鞣制皮革体系下两性聚合物和皮革胶原进行加脂的“靶向”位点结合的“单分子膜”模型,通过对电荷的调节,使两性聚合物在胶原纤维表面形成一层分子膜,从而实现对皮胶原纤维隔离润滑作用。探究了两性聚合物加脂剂在坯革中渗透分散机理及与胶原纤维的作用机理,初步证实了两性聚合物加脂剂上的羧基、季铵基可与胶原分子中的氨基、酰胺基、羟基等发生离子键和氢键的结合。(4)出于提升坯革柔软、滑爽及丰满等综合性能的目的,以两性聚合物pADD、脂肪酸甲酯、菜籽油、蓖麻油为原料复配制备两性聚合物复合加脂剂pADD-2,其复配条件优化实验结果:蓖麻油、脂肪酸甲酯、菜籽油、两性聚合物pADD的配比2:4:3:2,时间30 min,温度60℃、搅拌速度600 r/min,复配体系的pH 6.5。将优化后pADD-2分别应用于F-90有机无铬鞣制绵羊皮服装革和铬鞣革加脂工艺,结果表明:F-90有机无铬鞣革加脂后柔软度、抗张强度、撕裂强度分别较市售对比加脂剂提高了 90.20%、3.43%、2.12%;铬鞣革的柔软度、抗张强度、撕裂强度分别较市售对比加脂剂提高了 5.79%、8.93%、75.93%。pADD-2加脂剂在F-90有机无铬鞣制中吸收率达到98.98%,在铬鞣革加脂中吸收率为92.47%,分别比市售对比加脂剂的吸收率高23.48%和3.14%,pADD-2加脂剂在F-90染色中染料的吸收率达到98.65%,在铬鞣革染色中染料的吸收率为89.94%,分别比市售对比加脂染料的吸收率高9.31%,5.69%。探究了两性聚合物加脂剂在生态无铬鞣体系及绵羊蓝湿革体系中对后续阴离子材料作用机理,结果表明:两性聚合物加脂剂pADD-2与F-90有机无铬鞣制的绵羊白湿革胶原纤维间以离子键结合和氢键结合为主;两性聚合物加脂剂pADD-2与绵羊蓝湿革胶原纤维间以离子键结合、氢键结合和配位键结合为主。结果表明:所制备的两性聚合物复合加脂剂将在生态无铬鞣体系中具有良好的应用前景。

方艮辉[7](2020)在《延展型磷酸酯表面活性剂的合成和性能研究》文中进行了进一步梳理单十二烷基磷酸酯钾(MAPK)是一种绿色温和型表面活性剂,具有丰富的泡沫性、良好的洗净力、低脱脂力和低刺激性,因而广泛应用于个人清洁护理用品中。然而它们的钠盐形式水溶性差,且几乎不耐硬水,因而应用范围受限。经聚氧乙烯化改性的单十二烷基聚氧乙烯醚磷酸酯钠(MAEPNa)的水溶性和抗硬水性均较好,可是引入聚氧乙烯醚(PEO)砌块会产生致癌性二恶烷,因此急需解决MAPK的绿色替代问题。在表面活性剂分子中引入聚氧丙烯(PPO)砌块不产生致癌性二恶烷,因此烷基聚氧丙烯醚磷酸酯钠的环境友好性可能优于MAEPNa;Cc PpP中PPO砌块提供动态双亲性以及CcPpP在界面上可能形成的橄榄球状结构将赋予其乳化、润湿和去污等优异性能;此外,CcPpP在低刺激性等独特的性能上能否保持甚至优于MAPK尚需进一步研究。为解决上述问题,本文拟开展以天然脂肪醇为原料,经丙氧基化反应合成系列烷基聚氧丙烯醚(CcPp,c=12、14、16和18,p=3、6和9),再与焦磷酸反应合成系列单烷基聚氧丙烯醚磷酸酯钠(MCcPp P),用FT-IR、ESI-MS、1H-NMR和31P-NMR表征其结构。测定其克拉夫特点、表面张力、泡沫性、乳化力、润湿力、耐电解质性、钙皂分散力、去污力、刺激性以及初级生物降解性等一系列物化性质和应用性能,并与传统表面活性剂(c-表面活性剂)MAPK、十二烷基硫酸钠(SDS)和十二烷基聚氧乙烯醚-3-硫酸钠(SLE3S)进行对比,以此深入研究延展型磷酸酯表面活性剂的构效关系。在此基础上探索五氧化二磷为磷酸化试剂合成烷基聚氧丙烯醚磷酸酯(CcPpP),为性能优异的CcPpP产业化奠定基础。结果表明:(1)以KOH为催化剂,通过脂肪醇和环氧丙烷的丙氧基化反应制备了系列CcPp,再与焦磷酸进行磷酸酯化反应,经中和后合成了系列MCcPp P。由MCc PpP的1H-NMR中活泼氢积分值推算出实际PO加成数(p)与CcPp的羟值计算出的平均相对分子量的结果吻合;由溴甲酚绿-酚酞双指示剂法测得Cc PpP为单烷基磷酸酯,且与31P-NMR中仅有单磷酸酯的化学位移结果吻合,表明CcPp与焦磷酸反应的产物为MCcPp P。MCc PpP的结构经FT-IR和ESI-MS等进一步证实。(2)系列MCcPpP的Krafft点均小于0℃,表明其具有较好的低温水溶性;MCcPpP耐电解质性显着优于MAPK,且随烷基碳链数(c)以及p的减少而增强,其中MC12PpP良好的耐硬水能力使其可能单独用于日用化学品配方,杰出的耐盐性显示其特殊的应用潜能。系列MCcPp P的表面张力(γcmc)均小于MAPK,且随着c的增加而降低;MCc PpP的cmc均低于三种c-表面活性剂MAPK、SDS和SLE3S,且低1~3个数量级,表明MCc PpP更易于胶束化;MCcPp P的pC20和cmc/C20均高于三种c表面活性剂MAPK、SDS和SLE3S,表明相比于在溶液中胶束化,MCcPpP更倾向于吸附在气液界面上;MCc PpP的形状因子(S)值均大于5,表明其也具有延展型表面活性剂独特的橄榄球状结构。MCcPpP的泡沫性、乳化力和润湿力等综合性能也显着优于MAPK,特别是MC12P3P具有中等泡沫性、低刺激性以及优异的乳化力等综合优异性能,因此MCcPpP可替代MAPK成为一种可用于个人清洁和护理领域的新型绿色温和表面活性剂。此外,MCcPpP对硅油、霍霍巴油和辛癸酸三甘油酯等化妆品常用油相组分的乳化性好,表明其具有用作新型绿色温和化妆品乳化剂的潜力。(3)设计了两步加水合成高MCcPpP含量的CcPpP的方法。结果表明两步加水法合成高MCcPpP含量的CcPpP的优化条件为,n(C12P3):n(P2O5):n(H2O)为2:1:0.75,反应温度为80℃,反应时间为8 h,水解加水量为4 wt.%,水解温度90℃,水解时间12 h。在优化反应条件下的结果为产物中MC12P3P的质量百分含量为77.4 wt.%,双十二烷基聚氧丙烯醚-3磷酸酯(DC12P3P)的质量百分含量为12.9 wt.%,磷酸(PA)的质量百分含量为3.5 wt.%,C12P3醇醚转化率为91.3%。

巩雪笛[8](2020)在《含酰胺基两性型表面活性剂的合成及表面聚集性能研究》文中研究表明两性型的表面活性剂会对界面性能产生影响,在不同的领域适用性好,用途广泛,对环境相对友好,具有许多优良特性。本文以不同碳原子数的脂肪胺、丙烯酰胺等原料制备了一系列表面活性剂(b1、b2、b3、b4),分子结构中均含有酰胺基团,该系列表面活性剂类型是两性型的。以椰油酰基丙基二甲基叔胺(PKO)、磷酸二氢钠、环氧氯丙烷(ECH)等原料制备了表面活性剂b5,类型为两性型,分子结构中含酰胺基团。对合成的b1~b5产物的结构、表面化学性质、聚集行为及它们的性能进行实验探讨。用十八胺(C18H37NH2)、十六胺(C16H33NH2)、十四胺(C14H29NH2)、十二胺(C12H25NH2)分别与丙烯酰胺(CH2=CHCONH2)进行第一步合成反应,在70℃的条件下反应3 h,得到产物a1~a4;调温至75℃,分别向a1~a4中加入氯乙酸钠溶液,经5 h后,获得产物b1~b4。利用铁氰化钾法确定了在该反应条件下各产物的产率,经测定,b1的产率为68.80%,b2的产率为69.41%,b3的产率为59.35%,b4的产率可达到80.11%。产物a1除去溶剂后用乙醇重结晶提纯,产物b1除去溶剂后用石油醚重结晶提纯,产物a2~a4与产物b2~b4除去溶剂后分别用乙酸乙酯重结晶提纯,提纯后的各产物采用FTIR和1H NMR技术进行结构表征,经分析得出的实验数据与产品预期结果一致。利用吊环法测定了b1~b4的表面张力,在298.15 K下,b1的临界胶束浓度(CMC)为4.93×10-5 mol·L-1,此时的表面张力(γ)为41.4 mN·m-1;产物b2的CMC 为9.75×10-5 mol.L-1,此时的 γ 为 35.6 mN·m-1;产物 b3 的 CMC 为 1.05×104 mol.L-1,此时的γ为 31.1mN·m-1;产物 b4 的 CMC 为 2.75×104mol·L-1,此时的γ为30.7 mN.m-1。由电导率(κ-c)曲线可知,产物b1~b4的-c曲线拐点不是特别明显,由摩尔电导率(∧-c1/2)曲线可知,∧-c1/2曲线有极大值,并且极大值点在CMC前出现,说明b1~b4在溶液中的浓度达到CMC之前会形成自聚体,即发生预胶束化现象。对产物b1~b4的热力学函数进行了计算分析,结果表明该产物形成胶束的过程是自发进行的,整体呈现出放热现象,是熵主导的。由表观活化能-浓度(Ea-c)曲线图可知,由于预胶束化现象,曲线在最低点处对应的浓度应是预胶束形成的浓度,CMC出现在最低点的右侧附近。通过动态光散射技术(DLS)分析了各体系中粒径分布的情况,根据该分析推测b1-b4体系在不同浓度下的聚集行为,发现各体系在不同浓度下的胶束、囊泡和海绵状聚集体的分布具有一定的规律性。通过分水实验及泡沫实验分析了b1~b4体系中不同的疏水碳链长度对产物的乳化性能及泡沫性能产生的影响。通过对产物b1进行乳化和拌和实验可知,产物b1的类型是快裂型。在85℃下,将环氧氯丙烷滴入盛有磷酸二氢钠的三口烧瓶中,反应7.5 h,合成中间体a5。用异丙醇将椰油酰基丙基二甲基叔胺(PKO)溶解,保持75℃,加入中间体a5,反应5 h,得到产物b5。用控制变量法优化了合成反应第二步的反应条件,最佳反应条件为n=1.50(n=nEcH/nPKO),T=75 ℃,t=5h,此时用铁氰化钾法测定的产率最高可达到86.50%。a5除去溶剂后用甲醇进行重结晶提纯,b5除去溶剂后用乙酸乙酯进行重结晶提纯,提纯后采用FTIR和1HNMR进行结构表征,经分析得出的实验数据与产品预期结果一致。用吊环法进行测定分析b5的表面张力,在298.15 K下,产物b5的CMC为5.26×10-7mol.L-1,此时的γ为32.13 mN·m-1。由κ-c曲线及A-c1/2曲线对比可知,产物b5的CMC在κ-c曲线与A-c1/2曲线上完全一致,说明b5无预胶束化现象。对产物b5的热力学函数进行了计算分析,结果表明该产物形成胶束的过程是自发进行的,整体呈现出放热现象,是熵主导的。由Ea-c曲线图可知,曲线最低点对应的是CMC。通过DLS测定了体系中胶束粒径的情况,根据粒径分布推测b5体系在不同浓度下的聚集行为,发现b5体系在不同浓度下的胶束、囊泡和海绵状聚集体的分布具有一定的规律性。由分水实验知,分出10 mL水时,b5体系消耗时间为330 s,说明它的乳化性能好。通过泡沫实验可知,b5体系初始泡沫高度可达到58个单位,5 min后仍可达到55个单位,说明b5的起泡性和稳泡性好。通过对b5进行乳化和拌和实验可知,产物b5的类型是快裂型。

刘佳佳[9](2020)在《一类磷酸酯两性表面活性剂的合成及其性能研究》文中认为磷酸酯两性表面活性剂既有两性表面活性剂的多功能特性,从而呈现出优良的应用性能,如优异的发泡、去污、耐酸碱、柔软、抗静电和杀菌性能,又因为结构类似于细胞中的磷酸甘油酯而具有特殊的滑腻感,被广泛用于日用化学品领域。此外,酰胺类磷酸酯两性表面活性剂分子中含酰胺基团和磷酸酯基团,显示出与皮肤很好的相容性,性能温和、易于生物降解,其应用范围日趋扩大。随着生活水平的提高,研究环保型表面活性剂的各项性能可以为表面活性剂工业提供性能更好的新产品,比如替代工业产品配方中一些用量大却不环保的成分,对社会资源可持续发展具有重要的意义。本论文基于此合成了一类脂肪酰胺磷酸酯两性表面活性剂,并研究其合成工艺、表面性能、应用性能和复配性能,以及产物在洗发水配方中的应用,主要内容和结果包括:以磷酸二氢钠、环氧氯丙烷、脂肪酸和N,N-二甲基-1,3-丙二胺为原料,使用三步法合成不同碳链的磷酸酯两性表面活性剂(简称Cn-APA)。其中,脂肪酸和N,N-二甲基-1,3-丙二胺缩合得到中间体烷基酰胺丙基二甲基叔胺(简称Cn-PKO),产率为94%。对加成反应和季铵化反应的条件进行优化,找到了最佳的反应条件。中间体2-羟基-3-氯丙基磷酸酯钠(简称HCP)的合成条件为:在85oC下,投料比n(环氧氯丙烷):n(磷酸二氢钠)=1:1.2,磷酸二氢钠的质量浓度为50%,反应时间为5 h,产物的收率最高可达79%;Cn-APA的合成条件为:温度为120oC,压力为0.3 MPa,反应物摩尔比n(HCP):n(C12-PKO)=1:1,反应时间为5 h,C12-APA、C14-APA和C16-APA的产率分别为94.1%、93.8%和93.5%。提纯中间体及产物,并运用FT-IR、MS以及1H-NMR对其结构进行表征,确定了合成的物质为目标产物。研究发现C12-APA、C14-APA和C16-APA的Krafft点都低于0oC,适用范围宽泛;三种表面活性剂的cmc都很小,且随着疏水链长度的增加,cmc降低,γcmc先减小后增加。在温度为25~40oC的条件下,计算三种产物的胶束化热力学函数,结果表明胶束化过程为热效应和熵效应共同驱动的放热自发过程;研究了C16-APA/水杨酸钠体系的流变学性质,结果表明体系表现出蠕虫状胶束的特征;三种产物对帆布的润湿能力较差,对液体石蜡的乳化能力较好,拥有优良的发泡、稳泡性能,对皮脂污布的去污效果良好;三种产物的抗静电性能优良且相差不大。C12-APA对大肠杆菌的杀菌率低于90%,对金黄色葡萄球菌和白色念珠菌的杀菌率均高于99%。研究发现SDS/C12-APA复配体系在降低cmc、降低表面张力的效能和效率方面均存在协同效应,体系分子间存在中等相互作用,在某些复配比例下,体系的润湿、乳化、发泡性能有明显的协同效应。而AEO9/C12-APA复配体系无协同效应;研究了复配体系的微极性、胶束聚集数和胶束平均流体力学半径,所得结果可简单判定SDS/C12-APA体系具有协同效应,而AEO9/C12-APA体系不具有协同效应,并且对两种复配体系形成的胶束形貌进行简单分析;添加正丁醇会降低C12-APA水溶液的γcmc,并使其cmc增大。随着正丁醇浓度的增加,cmc先增大后减小,γcmc减小;添加聚乙二醇使C12-APA水溶液的γcmc减小,cmc增大,且随聚乙二醇浓度的增加变化不大。随着聚乙二醇聚合度增加时,cmc继续增大,γcmc继续减小,但在高聚合度(2000和11000)下,计算得到体系的表面化学参数基本不再变化。将C12-APA应用到一款无硅油无硫酸盐透明洗发水配方中。配方的p H值约为6.0~6.5,粘度约为3500~4000 mPa.s,以及耐热、耐寒稳定性试验均符合国家标准。对洗发水进行感官评价,该洗发水配方性能良好,有着明显的滑腻感,有望批量生产。

高世峰[10](2020)在《新型芳基甜菜碱表面活性剂的合成、理化性质及应用研究》文中提出随着油藏开发的不断深入,三元复合驱(碱/表面活性剂/聚合物)成为最有潜力的提高采收率技术之一。然而碱的加入会造成设备的结垢、管线的腐蚀和地层渗透率降低等不利影响,同时考虑到勘探开发逐渐向高温高盐油藏发展,合成出新型无碱驱耐温抗盐表面活性剂具有重要的意义。本文设计合成了两类新型芳基甜菜碱表面活性剂,同时系统研究了系列甜菜碱表面活性剂的理化性质和应用性能,为丰富新型芳基甜菜碱的认知和探索其应用于三次采油提供基础数据支持。首先,以2,6-二甲基苯酚为原料,经过Williamson醚化反应,Blanc氯甲基化反应,季铵化反应合成两类新型芳基甜菜碱型表面活性剂(BCBn和BSBn)。通过HPLC、1H-NMR、13C-NMR和FT-ICR MS对合成产物进行表征。合成的BCBn和BSBn纯度在95%以上。其次,系统研究了4种不同系列的甜菜碱表面活性剂的热重分析、表面性能、热力学性质、聚集体微极性和胶束自组装形态等理化性质。研究表明:甜菜碱表面活性剂的热稳定性与疏水基和亲水基的类型相关,疏水基中引入苯环能提高甜菜碱的热分解温度。BCBn和BSBn的热分解温度分别为197和245°C。芳基甜菜碱表面活性剂的临界胶束浓度(cmc)和表面张力(γ)均随碳链长度的增加而显着降低,并且表面活性优于十二烷基甜菜碱表面活性剂(ACB12和ASB12)。p C20和cmc/C20值均随碳链长度的增加而增加,说明长碳链芳基甜菜碱具有更高的降低表面张力的效率以及更强的界面吸附能力。芳基甜菜碱表面活性剂的和m均为负,说明甜菜碱表面活性剂在气/液界面上的吸附和在溶液中的胶束化均为自发行为。通过DLS和cryo-TEM研究甜菜碱表面活性剂在溶液中的聚集形态,结果表明:ACB12和ASB12在研究浓度范围内只能形成球状胶束,而BCBn和BSBn能自组装形成囊泡结构,并且随着表面活性剂浓度的增加,囊泡粒径不断增大。通过粗粒化分子动力学模拟验证了实验结果。同时研究囊泡形成机理,发现苯环的引入能增大疏水基在溶液中的暴露面积,有利于胶束进一步卷曲融合形成囊泡结构。最后,系统测试了系列甜菜碱表面活性剂的长期热稳定性、耐温抗盐性,静态吸附性、润湿性和驱油效率等应用性能。通过研究表面活性剂浓度、温度和盐浓度对界面张力的影响,结果表明BCBn(n=10,12和14)和BSBn(n=10和12)在不加碱时能与新疆原油达到超低界面张力。最低界面张力(IFTmin)随温度升高呈现先降低后升高的趋势,同时到达IFTmin的时间缩短。BCBn和BSBn对Na Cl的耐受性在10%以上。在Ca Cl2和Mg Cl2的浓度高达0.5%和0.2%时,油/水界面张力仍然能达到超低界面张力水平。同时BCB10和BSB10在120°C下老化30 d界面张力能维持在10–3 m N/m水平。因而系列芳基甜菜碱表面活性剂具有良好的耐温抗盐性能。BCB10和BSB10对石蜡膜的润湿性最好,最低接触角值分别为25.19°和31.89°。芳基甜菜碱表面活性剂在石英砂上的最大吸附量处于0.6~0.75 mg/g之间。岩心驱替实验结果表明ACB12和ASB12提高采收率分别为3.38%和3.2%,而BCBn和BSBn由于具有更低的界面张力和更好的润湿性,因而采收率达到4.73~6.49%。

二、新型磷酸酯两性表面活性剂的合成与应用研究(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、新型磷酸酯两性表面活性剂的合成与应用研究(论文提纲范文)

(1)中国洗涤技术发展研究 ——以中国日用化学工业研究院为中心(论文提纲范文)

中文摘要
ABSTRACT
绪论
    0.1 研究缘起与研究意义
    0.2 研究现状与文献综述
    0.3 研究思路与主要内容
    0.4 创新之处与主要不足
第一章 中外洗涤技术发展概述
    1.1 洗涤技术的相关概念
        1.1.1 洗涤、洗涤技术及洗涤剂
        1.1.2 表面活性剂界定、分类及去污原理
        1.1.3 助剂、添加剂、填充剂及其主要作用
        1.1.4 合成脂肪酸及其特殊效用
    1.2 国外洗涤技术的发展概述
        1.2.1 从偶然发现到商品——肥皂生产技术的萌芽与发展
        1.2.2 科学技术的驱动——肥皂工业化生产及其去污原理
        1.2.3 弥补肥皂功能的缺陷——合成洗涤剂的出现与发展
        1.2.4 新影响因素——洗涤技术的转型
        1.2.5 绿色化、多元化和功能化——洗涤技术发展新趋势
    1.3 中国洗涤技术发展概述
        1.3.1 取自天然,施以人工——我国古代洗涤用品及技术
        1.3.2 被动引进,艰难转型——民国时期肥皂工业及技术
        1.3.3 跟跑、并跑到领跑——新中国洗涤技术的发展历程
    1.4 中国日用化学工业研究院的发展沿革
        1.4.1 民国时期的中央工业试验所
        1.4.2 建国初期组织机构调整
        1.4.3 轻工业部日用化学工业科学研究所的筹建
        1.4.4 轻工业部日用化学工业科学研究所的壮大
        1.4.5 中国日用化学工业研究院的转制和发展
    本章小结
第二章 阴离子表面活性剂生产技术的发展
    2.1 我国阴离子表面活性剂生产技术的开端(1957-1959)
        2.2.1 早期技术研究与第一批合成洗涤剂产品的面世
        2.2.2 早期技术发展特征分析
    2.2 以烷基苯磺酸钠为主体的阴离子表面活性剂的开发(1960-1984)
        2.2.1 生产工艺的连续化研究及石油生产原料的拓展
        2.2.2 烷基苯新生产工艺的初步探索
        2.2.3 长链烷烃脱氢制烷基苯的技术突破及其它生产工艺的改进
        2.2.4 技术发展特征及研究机制分析
    2.3 新型阴离子表面活性剂的开发与研究(1985-1999)
        2.3.1 磺化技术的进步与脂肪醇聚氧乙烯醚硫酸盐、α-烯基磺酸盐的开发
        2.3.2 醇(酚)醚衍生阴离子表面活性剂的开发
        2.3.3 脂肪酸甲酯磺酸盐的研究
        2.3.4 烷基苯磺酸钠生产技术的进一步发展
        2.3.5 技术转型的方式及动力分析
    2.4 阴离子表面活性剂技术的全面产业化及升级发展(2000 年后)
        2.4.1 三氧化硫磺化技术的产业化发展
        2.4.2 主要阴离子表面活性剂技术的产业化
        2.4.3 油脂基绿色化、功能性阴离子表面活性剂的开发
        2.4.4 新世纪技术发展特征及趋势分析
    本章小结
第三章 其它离子型表面活性剂生产技术的发展
    3.1 其它离子型表面活性剂技术的初步发展(1958-1980)
    3.2 其它离子型表面活性剂技术的迅速崛起(1981-2000)
        3.2.1 生产原料的研究
        3.2.2 咪唑啉型两性表面活性剂的开发
        3.2.3 叔胺的制备技术的突破与阳离子表面活性剂开发
        3.2.4 非离子表面活性剂的技术更新及新品种的开发
        3.2.5 技术发展特征及动力分析
    3.3 其它离子型表面活性剂绿色化品种的开发(2000 年后)
        3.3.1 脂肪酸甲酯乙氧基化物的开发及乙氧基化技术的利用
        3.3.2 糖基非离子表面活性剂的开发
        3.3.3 季铵盐型阳离子表面活性剂的进一步发展
        3.3.4 技术新发展趋势分析
    本章小结
第四章 助剂及产品生产技术的发展
    4.1 从三聚磷酸钠至4A沸石——助剂生产技术的开发与运用
        4.1.1 三聚磷酸钠的技术开发与运用(1965-2000)
        4.1.2 4 A沸石的技术开发与运用(1980 年后)
        4.1.3 我国助剂转型发展过程及社会因素分析
    4.2 从洗衣粉至多类型产品——洗涤产品生产技术的开发
        4.2.1 洗涤产品生产技术的初步开发(1957-1980)
        4.2.2 洗涤产品生产技术的全面发展(1981-2000)
        4.2.3 新世纪洗涤产品生产技术发展趋势(2000 年后)
        4.2.4 洗涤产品生产技术的发展动力与影响分析
    本章小结
第五章 合成脂肪酸生产技术的发展
    5.1 合成脂肪酸的生产原理及技术发展
        5.1.1 合成脂肪酸的生产原理
        5.1.2 合成脂肪酸生产技术的发展历史
        5.1.3 合成脂肪酸生产技术研发路线的选择性分析
    5.2 我国合成脂肪酸生产技术的初创(1954-1961)
        5.2.1 技术初步试探与生产工艺突破
        5.2.2 工业生产的初步实现
    5.3 合成脂肪酸生产技术的快速发展与工业化(1962-1980)
        5.3.1 为解决实际生产问题开展的技术研究
        5.3.2 为提升生产综合效益开展的技术研究
    5.4 合成脂肪酸生产的困境与衰落(1981-90 年代初期)
    5.5 合成脂肪酸生产技术的历史反思
    本章小结
第六章 我国洗涤技术历史特征、发展动因、研发机制考察
    6.1 我国洗涤技术的整体发展历程及特征
        6.1.1 洗涤技术内史视野下“发展”的涵义与逻辑
        6.1.2 我国洗涤技术的历史演进
        6.1.3 我国洗涤技术的发展特征
    6.2 我国洗涤技术的发展动因
        6.2.1 社会需求是技术发展的根本推动力
        6.2.2 政策导向是技术发展的重要支撑
        6.2.3 技术引进与自主研发是驱动的双轮
        6.2.4 环保要求是技术发展不可忽视的要素
    6.3 我国洗涤技术研发机制的变迁
        6.3.1 国家主导下的技术研发机制
        6.3.2 国家主导向市场引导转化下的技术研发机制
        6.3.3 市场经济主导下的技术研发机制
    本章小结
结语
参考文献
攻读学位期间取得的研究成果
致谢
个人简况及联系方式

(2)含羧基两性型表面活性剂的合成及表面聚集性能研究(论文提纲范文)

中文摘要
ABSTRACT
符号说明
第一章 绪论
    1.1 引言
    1.2 表面活性剂的综述
        1.2.1 表面活性剂的分类
        1.2.2 两性表面活性剂的结构特点
        1.2.3 两性表面活性剂的合成
    1.3 表面活性剂的表面性质
        1.3.1 分子结构的影响
        1.3.2 环境的影响
    1.4 表面活性剂水溶液的体相性质
        1.4.1 临界胶束浓度
        1.4.2 溶液的聚集行为
    1.5 表面活性剂的应用
        1.5.1 公路建设与养护
        1.5.2 石油工业
        1.5.3 农业
        1.5.4 洗护
    1.6 立题依据
    1.7 研究内容及创新
        1.7.1 研究内容
        1.7.2 本文创新
第二章 含羧基磷酸酯钠两性型表面活性剂的合成及性能研究
    2.1 引言
    2.2 实验部分
        2.2.1 试剂与仪器
        2.2.2 合成方法
        2.2.3 结构表征
        2.2.4 产率测定
        2.2.5 表面张力的测定
        2.2.6 电导率的测定
        2.2.7 芘荧光光谱的测定
        2.2.8 等电点的测定
        2.2.9 动态光散射的测定
        2.2.10 分水时间的测定
        2.2.11 泡沫性能测定
        2.2.12 乳化沥青的性能测定
    2.3 结果与讨论
        2.3.1 合成工艺条件优化
        2.3.2 红外分析
        2.3.3 氢核磁谱图分析
        2.3.4 质谱分析
        2.3.5 元素分析
        2.3.6 产物D_1~D_4的表面化学性能
        2.3.7 电导率及热力学函数
        2.3.8 产物D_1~D_4胶束的微极性
        2.3.9 预胶束化现象的判定
        2.3.10 等电点分析
        2.3.11 表观活化能的探讨
        2.3.12 动态光散射分析
        2.3.13 分水时间
        2.3.14 泡沫性能
        2.3.15 乳化和拌和实验
    2.4 本章小结
第三章 含羧基磺酸钠两性型表面活性剂的合成及性能研究
    3.1 引言
    3.2 实验部分
        3.2.1 试剂与仪器
        3.2.2 合成方法
        3.2.3 结构表征
        3.2.4 产率测定
        3.2.5 表面张力的测定
        3.2.6 电导率的测定
        3.2.7 芘荧光光谱的测定
        3.2.8 等电点的测定
        3.2.9 动态光散射的测定
        3.2.10 分水时间的测定
        3.2.11 泡沫性能的测定
    3.3 结果与结论
        3.3.1 产率的测定
        3.3.2 红外分析
        3.3.3 氢核磁谱图分析
        3.3.4 质谱分析
        3.3.5 产物Q_1~Q_4的表面化学性能
        3.3.6 电导率及胶束化热力学函数
        3.3.7 产物Q_1~Q_4胶束的微极性
        3.3.8 预胶束化现象的判定
        3.3.9 等电点分析
        3.3.10 表观活化能的探讨
        3.3.11 动态光散射分析
        3.3.12 分水时间
        3.3.13 泡沫性能
    3.4 本章小结
第四章 结论
    4.1 结论
    4.2 展望
参考文献
致谢
攻读硕士学位期间发表的学术论文
学位论文评阅及答辩情况表

(3)氨基酸型驱油用表面活性剂的设计合成与基础应用研究(论文提纲范文)

摘要
abstract
第一章 文献综述
    1.1 强化采油技术
        1.1.1 注气驱油技术
        1.1.2 热力驱油技术
        1.1.3 微生物驱油技术
        1.1.4 化学驱油技术
    1.2 两性表面活性剂
        1.2.1 磺酸型两性表面活性剂
        1.2.2 磷酸酯型两性表面活性剂
        1.2.3 羧酸型两性表面活性剂
    1.3 氨基酸型表面活性剂的研究概况
        1.3.1 N-酰基型氨基酸表面活性剂的研究概况
        1.3.2 N-烷基型氨基酸表面活性剂的研究概况
        1.3.3 O-烷基酯型氨基酸驱油用表面活性剂的研究概况
    1.4 选题目的的意义和研究内容
        1.4.1 选题目的和意义
        1.4.2 研究内容
第二章 α,β-不饱和羰基化合物的制备
    2.1 引言
    2.2 实验药品
    2.3 实验与测试仪器
    2.4 合成步骤
        2.4.1 柯林斯试剂制备长链脂肪醛
        2.4.2 维蒂希-霍纳尔反应制备α,β-不饱和羰基化合物
    2.5 结构表征
        2.5.1 目标产物的红外波谱表征
        2.5.2 目标产物的核磁共振氢谱表征
    2.6 反应条件优化
        2.6.1 温度对反应的影响
        2.6.2 时间对反应的影响
        2.6.3 NaH对反应的影响
    2.7 小结
第三章 氨基酸型驱油用表面活性剂的制备
    3.1 引言
    3.2 实验药品
    3.3 实验与测试仪器
    3.4 合成步骤
    3.5 目标产物结构表征
        3.5.1 目标产物的红外谱图
        3.5.2 目标产物的核磁共振氢谱
    3.6 反应条件优化
        3.6.1 时间对反应的影响
        3.6.2 温度对反应的影响
    3.7 小结
第四章 Gemini氨基酸型驱油用表面活性剂的制备
    4.1 引言
    4.2 实验药品
    4.3 实验仪器与测试仪器
    4.4 合成步骤
        4.4.1 SN反应制备Gemini氨基酸表面活性剂
        4.4.2 Kabachnik-Fields反应制备Gemini氨基酸表面活性剂
    4.5 目标产物的结构表征
        4.5.1 目标产物的红外谱图
        4.5.2 目标产物的核磁共振氢谱
    4.6 小结
第五章 基于驱油用氨基酸表面活性剂的基础应用研究
    5.1 引言
    5.2 实验部分
        5.2.1 实验药品
        5.2.2 实验仪器
        5.2.3 实验方法
    5.3 基于氨基酸表面活性剂驱油剂的物化性能研究
        5.3.1 临界胶束浓度(CMC)
        5.3.2 耐温性能
        5.3.3 抗盐性能
        5.3.4 动态接触角
        5.3.5 油水界面张力的测定
    5.4 基于Gemini氨基酸驱油用表面活性剂的物化性能研究
        5.4.1 临界胶束浓度(CMC)
        5.4.2 耐温性能
        5.4.3 抗盐性能
        5.4.4 油水界面张力的测定
第六章 结论与展望
    6.1 结论
    6.2 展望
参考文献
发表论文和参加科研情况说明
致谢

(4)聚乙二醇联结的Gemini脂肪醇磷酸酯的制备及其皮革加脂性能(论文提纲范文)

摘要
ABSTRACT
符号说明
1 前言
    1.1 表面活性剂概述
        1.1.1 表面活性剂
        1.1.2 Gemini表面活性剂
    1.2 磷酸酯表面活性剂概述
        1.2.1 普通磷酸酯表面活性剂
        1.2.2 Gemini磷酸酯表面活性剂
    1.3 Gemini脂肪醇磷酸酯表面活性剂
    1.4 本课题研究的主要内容及意义
        1.4.1 课题研究的主要内容
        1.4.2 课题研究的意义
2 Gemini脂肪醇磷酸酯表面活性剂的制备
    2.1 引言
    2.2 实验部分
        2.2.1 实验材料与仪器
        2.2.2 产物的制备及纯化方法
        2.2.3 分析与检测
    2.3 结果与讨论
        2.3.1 磷酸化反应条件的优化
        2.3.2 酯化反应条件的优化
        2.3.3 产物结构的表征分析
    2.4 本章小结
3 Gemini脂肪醇磷酸酯表面活性剂的基本性能
    3.1 引言
    3.2 实验部分
        3.2.1 实验仪器
        3.2.2 乳液稳定性
        3.2.3 乳化力
        3.2.4 乳液粒径
        3.2.5 表面张力及临界胶束浓度的测定
        3.2.6 润湿性
        3.2.7 泡沫性
        3.2.8 聚集性
    3.3 结果与讨论
        3.3.1 乳液稳定性
        3.3.2 乳化力
        3.3.3 乳液粒径
        3.3.4 表面张力及临界胶束浓度
        3.3.5 润湿性
        3.3.6 泡沫性
        3.3.7 聚集性
    3.4 本章小结
4 Gemini脂肪醇磷酸酯表面活性剂对皮革加脂作用
    4.1 引言
    4.2 实验部分
        4.2.1 实验试剂及仪器
        4.2.2 加脂工艺
        4.2.3 坯革柔软度的测定
        4.2.4 坯革对加脂剂的吸净情况
        4.2.5 坯革物理机械性能的测定
        4.2.6 坯革透水汽性的测定
        4.2.7 坯革接触角的测定
        4.2.8 坯革吸水率的测定
        4.2.9 坯革抗静电性的测定
        4.2.10 坯革扫描电镜的测定
    4.3 结果与讨论
        4.3.1 坯革纤维的柔软度
        4.3.2 坯革对加脂剂的吸净情况
        4.3.3 坯革纤维的机械性能
        4.3.4 坯革纤维的透水汽性
        4.3.5 坯革纤维的疏水性
        4.3.6 坯革的抗静电性
        4.3.7 坯革纤维的SEM观察分析
        4.3.8 16-400与矿物油的协同加脂效果
    4.4 本章小结
5 结论与创新点
    5.1 结论
    5.2 创新点
致谢
参考文献
攻读学位期间发表的学术论文目录

(5)甜菜碱表面活性剂合成工艺的研究进展(论文提纲范文)

1 合成进展
    1.1 酰胺基甜菜碱
    1.2 磷酸酯甜菜碱
    1.3 磺基甜菜碱合成
        1.3.1 双子型磺基甜菜碱
        1.3.2 羟基磺基甜菜碱
        1.3.3 酚基磺基甜菜碱
        1.3.4 松香基磺基甜菜碱
2 在洗涤中的应用
3 结语

(6)基于咪唑型离子液体的两性聚合物加脂剂的制备与性能研究(论文提纲范文)

摘要
ABSTRACT
符号说明
1 绪论
    1.1 两性表面活性剂概述
        1.1.1 两性表面活性剂的类别
        1.1.2 两性表面活性剂的性质
        1.1.3 典型两性表面活性剂研究进展
    1.2 两性聚合物
        1.2.1 两性聚合物的特性
        1.2.2 两性聚合物的分类
        1.2.3 两性聚合物的合成方法
    1.3 离子液体
        1.3.1 离子液体简介
        1.3.2 离子液体的性质及特点
        1.3.3 离子液体聚合物
    1.4 皮革加脂剂
        1.4.1 皮革加脂剂概述
        1.4.2 两性加脂剂的研究现状
    1.5 课题的提出
2 咪唑型离子液体两亲性共聚物p(DMAE-co-[RVIM]Br)的合成及应用
    2.1 引言
    2.2 实验部分
        2.2.1 实验主要材料
        2.2.2 实验主要仪器
        2.2.3 [RVIM]Br的合成
        2.2.4 p(DMAE-co-[RVIM]Br)的合成
        2.2.5 结构表征与性能检测
        2.2.6 p(DMAE-co-[RVIM]Br)的加脂应用实验
    2.3 结果与讨论
        2.3.1 p(DMAE-co-[RVIM]Br)制备条件优化
        2.3.2 [RVIM]Br的FT-IR光谱分析
        2.3.3 [RVIM]Br的~1H-NMR分析
        2.3.4 p(DMAE-co-[RVIM]Br)的FT-IR光谱分析
        2.3.5 p(DMAE-co-[RVIM]Br)的~1H-NMR分析
        2.3.6 p(DMAE-co-[RVIM]Br)的XRD分析
        2.3.7 p(DMAE-co-[RVIM]Br)的表面张力分析
        2.3.8 p(DMAE-co-[RVIM]Br)乳液的粒径分布
    2.4 p(DMAE-co-[RVIM]Br)加脂剂加脂应用效果
        2.4.1 加脂坯革的SEM分析
        2.4.2 加脂坯革的超景深显微镜分析
        2.4.3 加脂坯革的热稳定性分析
        2.4.4 加脂坯革的柔软度分析
        2.4.5 加脂坯革的抗张强度与撕裂强度
    2.5 本章小结
3 1,3-丙磺酸内酯改性两性聚合物p(DMAE-co-[RVIM]Br)PS的合成及应用
    3.1 前言
    3.2 实验部分
        3.2.1 主要实验材料
        3.2.2 实验主要仪器
        3.2.3 两性聚合物p(DMAE-co-[RVIM]Br)PS的制备
        3.2.4 p(DMAE-co-[RVIM]Br)PS的结构表征与性能检测
        3.2.5 p(DMAE-co-[RVIM]Br)PS加脂应用实验
    3.3 结果与讨论
        3.3.1 p(DMAE-co-[RVIM]Br)PS的FT-IR光谱分析
        3.3.2 p(DMAE-co-[RVIM]Br)PS的~1H-NMR分析
        3.3.3 p(DMAE-co-[RVIM]Br)PS的GPC分析
        3.3.4 p(DMAE-co-[RVIM]Br)PS的XRD分析
        3.3.5 p(DMAE-co-[RVIM]Br)PS的TG-DTA分析
        3.3.6 p(DMAE-co-[RVIM]Br)PS的表面张力分析
        3.3.7 p(DMAE-co-[RVIM]Br)PS乳液的粒径分布
        3.3.8 p(DMAE-co-[RVIM]Br)PS的润湿性能分析
        3.3.9 p(DMAE-co-[RVIM]Br)PS离子性能分析
        3.3.10 p(DMAE-co-[RVIM]Br)PS抗菌性能分析
    3.4 F-90有机无铬鞣坯革的加脂应用实验分析
        3.4.1 加脂后坯革红外分析
        3.4.2 加脂后坯革超景深显微镜观测分析
        3.4.3 加脂后坯革SEM分析
        3.4.4 加脂后坯革EDX分析
        3.4.5 加脂后坯革AFM分析
        3.4.6 染料吸收率分析
        3.4.7 物理机械性能
        3.4.8 抗菌性能分析
    3.5 本章小结
4 丙烯酸改性两性聚合物加脂剂pADD-1的制备与性能研究
    4.1 前言
    4.2 实验部分
        4.2.1 主要试剂及材料
        4.2.2 仪器设备
        4.2.3 丙烯酸改性pADD两性聚合物的制备
        4.2.4 两性聚合物的制备路线
        4.2.5 单因素优化实验
        4.2.6 两性聚合物的物性指标测定
        4.2.7 两性聚合物结构表征与性能检测
        4.2.8 pADD两性聚合物在皮革加脂中的应用
    4.3 结果与讨论
        4.3.1 两性聚合物pADD制备条件优化
        4.3.2 两性聚合物pADD的FT-IR光谱分析
        4.3.3 两性聚合物pADD的~1H-NMR分析
        4.3.4 两性聚合物pADD的GPC分析
        4.3.5 两性聚合物pADD的HLB值分析
        4.3.6 两性聚合物pADD表面张力分析
        4.3.7 两性聚合物pADD的XRD分析
        4.3.8 两性聚合物pADD的TG-DTA分析
        4.3.9 两性聚合物pADD的离子特性分析
        4.3.10 两性聚合物pADD抗菌性能分析
    4.4 pADD-1在F-90有机无铬鞣制皮革加脂中的应用
        4.4.1 坯革柔软度分析
        4.4.2 坯革力学性能分析
        4.4.3 坯革增厚率分析
        4.4.4 坯革透水汽性及透气性分析
        4.4.5 加脂剂吸收率分析
        4.4.6 加脂剂乳液粒径分析
        4.4.7 F-90有机无铬鞣加脂坯革微观组织形貌分析
        4.4.8 两性聚合物pADD加脂坯革的抗菌性能分析
        4.4.9 两性聚合物pADD-1加脂剂限量指标测试结果
    4.5 两性聚合物对TWS生态无铬鞣匹配性能研究
        4.5.1 两性聚合物的等电点分析
        4.5.2 不同的等电点两性聚合物加脂剂吸收率分析
        4.5.3 不同的等电点两性聚合物加脂剂对坯革染色性能分析
    4.6 两性聚合物加脂剂在坯革中渗透结合行为
    4.7 两性聚合物加脂剂与胶原纤维的作用模型
    4.8 本章小结
5 两性聚合物加脂剂pADD-2的复配及应用研究
    5.1 前言
    5.2 实验部分
        5.2.1 主要试剂及材料
        5.2.2 主要仪器
        5.2.3 两性聚合物加脂剂的复配
        5.2.4 正交试验优化油脂种类及配比
        5.2.5 单因素优化加脂剂复配条件
        5.2.6 乳液稳定性测试
        5.2.7 pADD-2的表征及性能检测
        5.2.8 pADD-2在无铬鞣革加脂中的应用
        5.2.9 加脂后坯革性能表征
    5.3 结果与讨论
        5.3.1 正交试验优化油脂种类及配比
        5.3.2 单因素优化复配实验条件
        5.3.3 加脂剂的表征及性能检测
    5.4 pADD-2加脂剂在F-90有机无铬鞣革/蓝湿革加脂中的应用
        5.4.1 单因素优化有机无铬鞣革加脂工艺
        5.4.2 正交试验优化铬鞣革加脂工艺
        5.4.3 F-90鞣制绵羊白湿革的染色加脂应用效果
        5.4.4 绵羊蓝湿革的染色加脂应用效果
    5.5 本章小结
6 结论
论文的主要创新点
致谢
参考文献
附录
后续研究工作展望
攻读学位期间发表的学术论文

(7)延展型磷酸酯表面活性剂的合成和性能研究(论文提纲范文)

摘要
abstract
符号及缩写表
分子式及中英文名称表
第一章 绪论
    1.1 延展型表面活性剂
        1.1.1 延展型表面活性剂的结构
        1.1.2 延展型表面活性剂的理化性质
        1.1.3 延展型表面活性剂的潜在应用
    1.2 磷酸酯表面活性剂的合成
        1.2.1 五氧化二磷法
        1.2.2 磷酸法
        1.2.3 聚磷酸法
        1.2.4 三氯氧磷
        1.2.5 三氯化磷
    1.3 磷酸酯表面活性剂的主要性质和性能
        1.3.1 溶解性
        1.3.2 表面张力
        1.3.3 泡沫性能
        1.3.4 去污力
        1.3.5 刺激性
    1.4 磷酸酯表面活性剂的应用
        1.4.1 个人护理用品及化妆品
        1.4.2 纺织工业
        1.4.3 农药及造纸工业
        1.4.4 皮革工业
        1.4.5 涂料及冶金工业
    1.5 立题依据和主要研究内容
        1.5.1 立题依据
        1.5.2 主要研究内容
第二章 磷酸酯延展型表面活性剂的合成和结构鉴定
    2.1 引言
    2.2 实验试剂和仪器
        2.2.1 实验试剂
        2.2.2 实验仪器
    2.3 实验方法
        2.3.1 C_cP_p的合成
        2.3.2 MC_cP_pP的合成
        2.3.3 单十二烷基磷酸酯钾的制备
        2.3.4 C_cP_p平均相对分子质量的测定
        2.3.5 C_cP_pP组成的测定
    2.4 结果与讨论
        2.4.1 醇醚C_cP_p的平均相对分子质量
        2.4.2 延展型磷酸酯表面活性剂的结构鉴定
        2.4.3 C_cP_pP的组成
    2.5 本章小结
第三章 延展型磷酸酯表面活性剂的构效关系
    3.1 引言
    3.2 实验试剂和仪器
        3.2.1 实验试剂
        3.2.2 实验仪器
    3.3 实验方法
        3.3.1 Krafft点
        3.3.2 表面张力
        3.3.3 泡沫性
        3.3.4 乳化力
        3.3.5 润湿力
        3.3.6 钙离子稳定性
        3.3.7 耐NaCl能力
        3.3.8 钙皂分散力
        3.3.9 去污力
        3.3.10 刺激性体外试验
        3.3.11 初级生物降解性
    3.4 实验结果与讨论
        3.4.1 MC_cP_pP的气/液表面性质
        3.4.2 MC_cP_pP的油/水界面性质
        3.4.3 MC_cP_pP的固/液界面性质
        3.4.4 MC_cP_pP的胶束表面性质
        3.4.5 MC_cP_pP的个人清洁/护理用品的综合评价
    3.5 本章小结
第四章 P_2O_5法合成磷酸单酯型延展型表面活性剂的探索
    4.1 引言
    4.2 实验试剂和仪器
        4.2.1 实验试剂
        4.2.2 实验仪器
    4.3 实验方法
        4.3.1 磷酸酯延展型表面活性剂的合成方法
        4.3.2 产物的分析方法
        4.3.3 两步加水法合成磷酸酯延展型表面活性剂
    4.4 实验结果和讨论
        4.4.1 合成方法的选择
        4.4.2 分析方法的选择
        4.4.3 加水时间对产物组成的影响
        4.4.4 反应温度对产物组成的影响
        4.4.5 水解时间对产物组成的影响
        4.4.6 反应条件对产物组成的影响
        4.4.7 水解条件对产物组成的影响
        4.4.8 最优条件下的重复实验
    4.5 本章小结
全文主要结论和展望
参考文献
致谢
附录1:作者在研究生期间发表的论文
附录2:附图

(8)含酰胺基两性型表面活性剂的合成及表面聚集性能研究(论文提纲范文)

中文摘要
ABSTRACT
符号说明
第一章 文献综述
    1.1 引言
    1.2 表面活性剂综述
        1.2.1 表面活性剂的分类
        1.2.2 两性表面活性剂的结构特点
        1.2.3 两性表面活性剂的合成
    1.3 表面活性剂的特性
        1.3.1 表面活性剂的界面吸附
        1.3.2 表面活性剂的临界胶束浓度
        1.3.3 表面活性剂的聚集行为
    1.4 表面活性剂的应用
        1.4.1 在公路建设及养护上的应用
        1.4.2 在建筑工程方面的应用
        1.4.3 在油田方面的应用
        1.4.4 在其他方面的应用
    1.5 立题依据
    1.6 研究内容及创新点
        1.6.1 研究内容
        1.6.2 本文创新点
第二章 不同疏水碳链长度的含酰胺基两性表面活性剂的合成
    2.1 引言
    2.2 实验部分
        2.2.1 原料与仪器
        2.2.2 合成方法
        2.2.3 结构表征
        2.2.4 产率测定
        2.2.5 表面张力的测定
        2.2.6 电导率的测定
        2.2.7 动态光散射(DLS)测定
        2.2.8 分水时间的测定
        2.2.9 泡沫性能测定
        2.2.10 乳化沥青的性能测试
    2.3 结果与讨论
        2.3.1 反应产率
        2.3.2 红外分析
        2.3.3 氢核磁谱图分析
        2.3.4 b_1~b_4的表面张力(γ)及表面性能参数
        2.3.5 电导率及热力学函数
        2.3.6 表观活化能的探讨
        2.3.7 动态光散射(DLS)分析
        2.3.8 分水时间
        2.3.9 泡沫性能实验
        2.3.10 乳化与拌和实验
    2.4 本章小结
第三章 含酰胺基两性磷酸酯盐沥青乳化剂的合成
    3.1 引言
    3.2 实验部分
        3.2.1 试剂与仪器
        3.2.2 合成方法
        3.2.3 结构表征
        3.2.4 产率测定
        3.2.5 表面张力的测定
        3.2.6 电导率的测定
        3.2.7 动态光散射(DLS)测定
        3.2.8 分水时间的测定
        3.2.9 泡沫性能测定
        3.2.10 乳化沥青的性能测试
    3.3 结果与讨论
        3.3.1 反应条件工艺优化
        3.3.2 红外分析
        3.3.3 氢核磁谱图分析
        3.3.4 产物b_5的表面张力及表面性能参数
        3.3.5 电导率及热力学函数
        3.3.6 表观活化能的探讨
        3.3.7 动态光散射(DLS)分析
        3.3.8 分水时间
        3.3.9 泡沫实验
        3.3.10 产物b_5乳化与拌和结果分析
    3.4 本章小结
第四章 结论
    4.1 结论
    4.2 展望
参考文献
致谢
攻读硕士学位期间发表的学术论文
学位论文评阅及答辩情况表

(9)一类磷酸酯两性表面活性剂的合成及其性能研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 引言
    1.2 两性表面活性剂简介
        1.2.1 两性表面活性剂的分子结构
        1.2.2 两性表面活性剂的分类
        1.2.3 两性表面活性剂的特性
    1.3 磷酸酯两性表面活性剂的研究进展
        1.3.1 磷酸酯两性表面活性剂的种类
        1.3.2 磷酸酯两性表面活性剂的合成
        1.3.3 磷酸酯两性表面活性剂的特点
        1.3.4 磷酸酯两性表面活性剂的发展
    1.4 磷酸酯两性表面活性剂的性能与应用
        1.4.1 表面化学性能
        1.4.2 流变性质
        1.4.3 抗静电性能
        1.4.4 杀菌性能
    1.5 表面活性剂复配的研究
    1.6 无硅油洗发水的简介
    1.7 立题依据及研究内容
        1.7.1 选题背景及依据
        1.7.2 课题主要研究内容
第二章 磷酸酯两性表面活性剂的合成及表征
    2.1 引言
    2.2 实验试剂与仪器
        2.2.1 实验试剂
        2.2.2 实验仪器
    2.3 实验内容
        2.3.1 磷酸酯两性表面活性剂的合成
        2.3.2 结构表征
        2.3.3 叔胺的酸值、胺值测定
    2.4 结果与讨论
        2.4.1 磷酸酯两性表面活性剂合成工艺条件的优化
        2.4.2 磷酸酯两性表面活性剂的结构表征
    2.5 本章小结
第三章 磷酸酯两性表面活性剂的性能研究
    3.1 引言
    3.2 实验试剂与仪器
        3.2.1 实验试剂
        3.2.2 实验仪器
    3.3 实验原理与方法
        3.3.1 表面性能的测定
        3.3.2 流变性质的测定
        3.3.3 应用性能的测定
    3.4 结果与讨论
        3.4.1 表面性能
        3.4.2 流变性质
        3.4.3 应用性能
    3.5 本章小结
第四章 复配体系的性能研究
    4.1 引言
    4.2 实验试剂与仪器
        4.2.1 实验试剂
        4.2.2 实验仪器
    4.3 实验内容
        4.3.1 表面张力的测定
        4.3.2 应用性能的测定
        4.3.3 微极性的测定
        4.3.4 胶束聚集数的测定
        4.3.5 胶束平均流体力学半径的测定
    4.4 结果与讨论
        4.4.1 与传统表面活性剂的复配体系研究
        4.4.2 与正丁醇的复配体系研究
        4.4.3 与聚乙二醇的复配体系研究
    4.5 本章小结
第五章 无硅油无硫酸盐洗发水配方的研究
    5.1 引言
    5.2 实验试剂与仪器
        5.2.1 实验试剂
        5.2.2 实验仪器
    5.3 实验内容
        5.3.1 实验方法
        5.3.2 实验配方及操作工艺
        5.3.3 pH值和粘度的测定
        5.3.4 耐热、耐寒稳定性的测定
        5.3.5 泡沫的测定
    5.4 结果与讨论
        5.4.1 配方的理化指标
        5.4.2 配方的感官评价
    5.5 本章小结
主要结论与展望
    主要结论
    展望
致谢
参考文献
附录 :作者在攻读硕士学位期间发表的论文

(10)新型芳基甜菜碱表面活性剂的合成、理化性质及应用研究(论文提纲范文)

摘要
ABSTRACT
创新点
引言
第1章 文献综述
    1.1 表面活性剂在三次采油中的应用
        1.1.1 表面活性剂的驱油机理
        1.1.2 驱油用表面活性剂研究进展
        1.1.3 无碱驱耐温抗盐表面活性剂的要求
    1.2 甜菜碱表面活性剂
        1.2.1 羧基甜菜碱表面活性剂
        1.2.2 磺基甜菜碱表面活性剂
        1.2.3 硫酸酯甜菜碱表面活性剂
        1.2.4 磷酸酯甜菜碱表面活性剂
    1.3 无碱驱甜菜碱表面活性剂研究进展
        1.4.1 双烷基甜菜碱表面活性剂
        1.4.2 芳基甜菜碱表面活性剂
    1.4 粗粒化分子动力学模拟
        1.4.1 粗粒化分子动力学模拟的概述
        1.4.2 粗粒化分子动力学模拟的在表面活性剂领域的应用
    1.5 选题背景与研究内容
        1.5.1 研究背景及目的
        1.5.2 研究内容
第2章 系列甜菜碱型表面活性剂的合成及表征
    2.1 引言
    2.2 实验药品和仪器
        2.2.1 实验药品
        2.2.2 实验仪器
    2.3 系列长链芳基羧基甜菜碱表面活性剂的合成
        2.3.1 2-(长链烷氧基)-1,3-二甲基苯的合成及表征
        2.3.2 5-氯甲基-2-(长链烷氧基)-1,3-二甲基苯的合成及表征
        2.3.3 系列长链芳基羧基甜菜碱表面活性剂的合成及表征
    2.4 系列长链芳基磺基甜菜碱表面活性剂的合成
        2.4.1 3-(二甲基氨基)-2-羟丙基磺酸钠的合成及表征
        2.4.2 系列长链芳基磺基甜菜碱表面活性剂的合成及表征
    2.5 N-十二烷基-N,N-二甲基羧基甜菜碱表面活性剂的合成
    2.6 N-十二烷基-N,N-二甲基羟丙基磺基甜菜碱表面活性剂的合成
    2.7 本章小结
第3章 系列甜菜碱表面活性剂的理化性质
    3.1 引言
    3.2 实验药品和仪器
        3.2.1 实验药品
        3.2.2 实验仪器
    3.3 实验方法
        3.3.1 热重分析
        3.3.2 表面张力
        3.3.3 稳态荧光光谱
        3.3.4 动态光散射
        3.3.5 透射电镜
        3.3.6 冷冻透射电镜
    3.4 结果与讨论
        3.4.1 热重分析
        3.4.2 表面张力
        3.4.3 界面吸附
        3.4.4 胶束化与热力学参数
        3.4.5 聚集体微极性
        3.4.6 胶束粒径分布
        3.4.7 聚集体形态
        3.4.8 堆积参数P的计算
    3.5 粗粒化分子动力学模拟
        3.5.1 实验参数设定
        3.5.2 实验结果分析
    3.6 本章小结
第4章 系列甜菜碱表面活性剂的应用性能研究
    4.1 引言
    4.2 实验药品和仪器
        4.2.1 实验药品
        4.2.2 实验仪器
    4.3 实验方法
        4.3.1 界面张力
        4.3.2 长期热稳定性
        4.3.3 润湿性能
        4.3.4 静态吸附
        4.3.5 乳化性能
        4.3.6 岩心物理模拟
    4.4 结果与讨论
        4.4.1 界面张力
        4.4.2 长期热稳定性
        4.4.3 润湿性能
        4.4.4 静态吸附
        4.4.5 乳化性能
        4.4.6 岩心物理模拟
    4.5 本章小结
第5章 结论
参考文献
附录 A 系列芳基甜菜碱表面活性剂及中间体表征图谱
致谢
个人简历、在学期间发表的学术论文及研究成果
    个人简历
    攻读博士学位期间发表学术论文
学位论文数据集

四、新型磷酸酯两性表面活性剂的合成与应用研究(论文参考文献)

  • [1]中国洗涤技术发展研究 ——以中国日用化学工业研究院为中心[D]. 王鹏飞. 山西大学, 2021(01)
  • [2]含羧基两性型表面活性剂的合成及表面聚集性能研究[D]. 陈雅雯. 山东大学, 2021(12)
  • [3]氨基酸型驱油用表面活性剂的设计合成与基础应用研究[D]. 赵文辉. 天津工业大学, 2021(01)
  • [4]聚乙二醇联结的Gemini脂肪醇磷酸酯的制备及其皮革加脂性能[D]. 简婷. 陕西科技大学, 2021(09)
  • [5]甜菜碱表面活性剂合成工艺的研究进展[J]. 王文权,刘毅,张梦圆. 中国洗涤用品工业, 2020(10)
  • [6]基于咪唑型离子液体的两性聚合物加脂剂的制备与性能研究[D]. 郝东艳. 陕西科技大学, 2020(05)
  • [7]延展型磷酸酯表面活性剂的合成和性能研究[D]. 方艮辉. 江南大学, 2020(01)
  • [8]含酰胺基两性型表面活性剂的合成及表面聚集性能研究[D]. 巩雪笛. 山东大学, 2020(12)
  • [9]一类磷酸酯两性表面活性剂的合成及其性能研究[D]. 刘佳佳. 江南大学, 2020(01)
  • [10]新型芳基甜菜碱表面活性剂的合成、理化性质及应用研究[D]. 高世峰. 中国石油大学(北京), 2020(02)

标签:;  ;  ;  ;  ;  

新型磷酸盐两性表面活性剂的合成与应用
下载Doc文档

猜你喜欢