浅谈高等数学的教学实践

浅谈高等数学的教学实践

一、浅谈高等数学教学实践(论文文献综述)

沈小雨[1](2021)在《数学史融入高等数学教学的意义和方法探究》文中研究指明高等数学教学作为一门复杂、系统的学科,数学史的融入意义非凡。数学史在高等数学教学中的融入与运用,需要将数学史融入高等数学教学的整个框架中,在两者的相互促进与作用下,探究两者之间的关系,发展学生思维,帮助学生理解和理清数学知识脉络,进而提升学生的数学学习能力,达到高等数学教学实践有效性的目的。立足于数学史的内涵,分析数学史融入高等数学教学的意义,提出数学史融入高等数学教学的实践方法。

刘家新[2](2021)在《“课程思政”视域下初中数学教学设计研究 ——以函数教学为例》文中研究说明立德树人是我国教育的根本任务,加强对学生的思想政治教育,思想政治课是主渠道,在各学科教育中渗透思想政治教育也责无旁贷。在学科教学中融入思想政治的元素,使学科课程在育人中发挥应有的作用,是新时代教育工作者的使命。在文献研究的基础上,研究践行课程思政的理论模型,即确立辩证唯物主义观教育、家国情怀和爱国主义精神的教育、社会责任感教育、优良品德和个性品质教育这四个维度,从这四个维度出发将课程思政融入到初中数学教学设计之中,在数学教学中对学生进行思想政治教育。运用问卷调查法和访谈法,了解当前在初中数学教学中践行课程思政的现状;结合教学内容和学生特点,以初中函数教学为例,探索“课程思政”视域下的初中数学教学设计,并进行实践和效果检验,提出在初中数学教学中践行课程思政方法与途径。在初中数学教学中践行课程思政是必要的和可行的,将数学知识的学习与思政教育有机结合起来,既能实现在教学过程中对学生进行思想政治教育,又能通过思政案例的呈现激发学生的数学学习兴趣,调动学习的积极性,有助于对于数学专业知识的掌握。在初中数学教学设计中践行课程思政:学校要加强对课程思政教学改革的领导,建立科学的评价体系,实现课程思政资源和案例共享,保证课程思政的践行效果;教师要加强师德修养,树立在教学中践行课程思政的教育信念,深度挖掘思政元素,并在教学各环节中落实。

李超[3](2021)在《“高观点”下高中导数解题及教学研究》文中提出随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.

王改珍[4](2021)在《职前数学教师专业知识结构及水平的实证研究》文中研究表明随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

沈中宇[5](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究说明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

杜建慧[6](2021)在《基于“超星平台+腾讯会议”线上高等数学教学实践与改革探讨》文中进行了进一步梳理目前,随着我国网络信息技术的不断发展,线上网络教学变得越来越常见,在高等数学教学实践和改革中也是如此。我国当前的线上高等数学教学模式和方法越来越多,其中基于"超星平台+腾讯会议"的线上高等数学教学就是比较有效的一种。本文主要进行基于"超星平台+腾讯会议"线上高等数学教学实践与改革探讨。如今,随着我国互联网的不断发展,

王若宇[7](2020)在《大学生数字-空间三维心理表征的特点及其教育启示》文中研究表明本文从大学生数学学习的角度结合认知科学研究结果,使用实验研究法证明了我国大学生在表征数量时会与三维空间中的不同方向产生自动化的联结反应并得到教育启示,即大学生的数量表征与空间信息的规律是存在于日常教育活动的三维空间中的。本文首先通过梳理相关研究发现,数字、空间加工的激活脑区重叠,因此两者间可能存在某种共同的认知神经机制,而且数字-空间联合表征(SNARC效应)与数学能力的发展显着相关,并且其效应量随着数学能力的发展而变化,即该效应能够作为判断大学生数学学习认知特点的辅助标准,并为大学数学教学改革提供实证证据。而后使用大小判断范式对120名大学生进行研究。实验结果表明数字空间联合编码效应在三维空间中存在,并得出大学生的数字-空间联合表征特点:小数与左侧、下方和近端产生自动化关联,大数与右侧、上方和远端产生自动化关联。最后,本文基于认知神经科学研究结果探讨了影响大学生数学学习的主要因素以及对大学数学教育的启示。从基于大学生认知特点促进其数学学习能力提升方面:首先,此研究有利于师生了解空间信息与数字的密切关系。这为进一步利用空间信息提升数学能力提供了实验证据。其次,有利于调整学习策略适应大学数学学习。不同的SNARC效应水平可能反映了不同学生的认知特点,这能帮助学生需要根据自身认知情况选择合适的学习策略。第三,提示数学学习中需要积极使用新技术。从基于新技术构建突出空间信息与操作性的教学方法方面:首先,当前计算机辅助教学在一定程度上促进了数学内容的直观性与可操作性,这为空间信息应用于数学教育提供了技术支持。因此在改革与完善高等数学课程内容时,要充分利用移动终端、虚拟现实等教育技术,让高等数学内容更直观且便于操作其次,教师可以根据新技术优化教学内容的与教学理念,使新技术能够最大程度发挥作用。第三,SNARC效应提供了新的评价方式,促进了数学教学评价方式多样化。教师可以通过监控该效应的强度以辅助教师判断学生数学能力的变化,为评价学生数学能力提供辅助标准。对于一些数学基础比较薄弱的学生,可以有针对性的训练其表征数字时与空间进行联系的能力,促进数学能力的提高。对有不同数学能力要求的专业,也可以通过测量SNRAC效应辅助判断学生的数学能力。以便于教师更好的掌握学生情况,做到因材施教。

刘奕[8](2020)在《5G网络技术对提升4G网络性能的研究》文中进行了进一步梳理随着互联网的快速发展,越来越多的设备接入到移动网络,新的服务与应用层出不穷,对移动网络的容量、传输速率、延时等提出了更高的要求。5G技术的出现,使得满足这些要求成为了可能。而在5G全面实施之前,提高现有网络的性能及用户感知成为亟需解决的问题。本文从5G应用场景及目标入手,介绍了现网改善网络性能的处理办法,并针对当前5G关键技术 Massive MIMO 技术、MEC 技术、超密集组网、极简载波技术等作用开展探讨,为5G技术对4G 网络质量提升给以了有效参考。

李妍[9](2020)在《初高等数学衔接问题研究 ——以三角、反三角函数为例》文中进行了进一步梳理高中教育重在面向全体学生,属于义务教育的延续,同时也担负着为高等院校输送和选拔人才的任务。而大学则重在为社会主义事业培养建设者和接班人,确保学生在进入社会之前能够掌握基本的专业知识以及专业能力。虽然从教学目标、内容、理念、方式以及受教育者的思维水平等方面来看,二者都有着极大的区别,但是从系统论的角度来看,教育本身是一个完整的系统,它由不同的子系统串联、相互衔接、彼此作用而成。鉴于高中和大学教师教学方式与学生学习方式的极大转变,很容易导致学生由高中步入大学时产生断层现象。因此,初高等教育间的衔接问题就变得日益突出。由于三角函数的相关知识不仅仅是基本初等函数中的一种,更是沟通着初等数学与高等数学的通道之一。而作为与三角函数互为反函数的反三角函数,它不仅对于三角函数知识的理解有着重要的作用,还可以用来培养学生的逻辑推理能力以及严谨的数学思维。因此,本文以三角函数与反三角函数为抓手,研究初高等数学间的衔接问题,希望能为我国教育事业的有机整合做出贡献。首先,明确本研究课题的研究背景和意义。据此对相关文献进行整理分析,了解三角函数与反三角函数的研究现状,分析在初等数学阶段三角及反三角函数的教学内容及重点。同时,总结国内外关于教育衔接问题的研究情况。其次,以“提出问题——分析问题——解决问题”为主线逐步展开论文主体内容。其中,“提出问题”这一部分主要是三角和反三角函数的教学及应用现状分析。在初等数学中,以数学课程标准和高考试题为入手点,分析三角及反三角函数的教学现状,同时以华东师范大学数学系编写的第四版《数学分析》一书为参考,分析三角及反三角函数在高等数学中的应用,借此分析初高等数学间三角及反三角函数存在的衔接问题。“分析问题”这部分则主要是依据上述现状分析,总结三角及反三角函数存在的衔接问题,从初等数学与高等数学两个维度,深入挖掘衔接问题形成的原因。在“解决问题”这部分,则是根据所提出的问题和形成原因,针对不同的主体提出相应的衔接建议,并给出部分教学片断和两个具体衔接内容的案例设计。最后,是本研究课题所得成果的推广。结合衔接建议中“注重提升学生的学科核心素养”,将本文的研究成果平行推广到定积分应用一课中,并给出详细的教学设计。

陈灵波[10](2020)在《微课和翻转课堂在高等数学教学中的应用》文中研究表明微课和翻转课堂都属于一种创造性的教学理念和教学模式,在实际应用过程中备受好评并取得了良好的效果。将微课与翻转课堂融入课堂主题教学环节中,能够保证学生在更加自由宽松的学习氛围下掌握学科技巧和精髓。高等数学涉及内容和形式比较复杂,许多学生在学习过程中面临较大的困难和障碍,教师也承担着较大的教学压力。为构建高效课堂,减轻学生学习压力,教师应以微课和翻转课堂为依据,在高等数学教学过程中引入这两大教学理念,落实教学实践活动,在教学实践前做好充分的准备工作,分析学生在自主学习过程中的实际情况,着眼于学生的学习能力以及个性化发展要求调整教学策略,充分体现两大教学模块的引导作用和教育价值,保障高等数学教学能够发挥应有的作用及优势,为学生提供更多的学习平台和机会。

二、浅谈高等数学教学实践(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、浅谈高等数学教学实践(论文提纲范文)

(1)数学史融入高等数学教学的意义和方法探究(论文提纲范文)

0 引言
1 数学史概述
2 数学史融入高等数学教学的意义
    2.1 促进高等数学教学的数学观形成
    2.2 激发学生的数学学习兴趣
    2.3 培养学生数学核心素养
3 数学史融入高等数学教学的实践方法
    3.1 树立新的高等数学教学观念
    3.2 创新高等数学教学方式
    3.3 拓宽高等数学教学载体
4 结束语

(2)“课程思政”视域下初中数学教学设计研究 ——以函数教学为例(论文提纲范文)

摘要
abstract
1 绪论
    1.1 问题提出
    1.2 研究意义及目的
    1.3 研究内容、研究方法和研究思路
    1.4 研究重点、难点及创新点
    1.5 论文结构
2 文献综述、核心概念界定与理论基础
    2.1 文献综述
    2.2 核心概念界定
    2.3 理论基础
3 研究设计
    3.1 研究假设
    3.2 研究对象
    3.3 研究工具
    3.4 研究实施过程
    3.5 研究中需要注意的问题
4 调查研究
    4.1 问卷调查
    4.2 教师访谈
    4.3 践行课程思政存在的问题
5 教学设计
    5.1 设计依据
    5.2 框架与切入点
    5.3 教学设计示例
6 教学实践
    6.1 示例:“二次函数”第一节的第一课时
    6.2 评析
    6.3 效果对比分析
7 研究结论、建议与展望
    7.1 研究结论
    7.2 研究建议
    7.3 研究不足
    7.4 研究展望
参考文献
附录
    附录1:初中数学教学中课程思政践行现状教师调查问卷
    附录2:学生测试题(以二次函数为例)
    附录3:“课程思政”视域下初中数学教学设计研究教师访谈提纲
    附录4:“课程思政”视域下初中数学教学设计研究学生访谈提纲
    附录5:教师访谈示例
致谢

(3)“高观点”下高中导数解题及教学研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究的背景
        1.1.1 数学教师专业素养发展的需要
        1.1.2 优秀高中学生自身发展的需求
        1.1.3 导数在高中数学教学及高考中的地位
    1.2 核心名词界定
        1.2.1 高观点
        1.2.2 导数
        1.2.3 数学教学
        1.2.4 解题
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.2 研究计划
        1.4.3 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献搜集
    2.2 高观点下中学数学的研究现状
        2.2.1 国外研究的现状
        2.2.2 国内的研究现状
    2.3 高观点下高中导数的研究现状
        2.3.1 国外研究的现状
        2.3.2 国内研究的现状
    2.4 文献述评
    2.5 小结
第3章 研究设计
    3.1 研究的目的
    3.2 研究的方法
        3.2.1 文献研究法
        3.2.2 问卷调查法
        3.2.3 案例研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 小结
第4章 调查研究及结果分析
    4.1 教师调查问卷的设计及结果分析
        4.1.1 调查问卷设计
        4.1.2 实施调查
        4.1.3 调查结果分析
        4.1.3.1 问卷的信度分析
        4.1.3.2 问卷的效度分析
        4.1.3.3 问卷的结果分析
    4.2 学生调查问卷的设计及结果分析
        4.2.1 调查问卷设计
        4.2.2 实施调查
        4.2.3 调查结果及分析
    4.3 调查结论
    4.4 小结
第5章 “高观点”下高中导数的解题研究
    5.1 “高观点”下高考导数试题的命题背景
        5.1.1 以高等数学中的基本定义和性质为命题背景
        5.1.1.1 高斯函数
        5.1.1.2 函数的凹凸性
        5.1.2 以高等数学中的重要定理或公式为命题背景
        5.1.2.1 洛必达法则
        5.1.2.2 拉格朗日中值定理
        5.1.2.3 拉格朗日乘数法
        5.1.2.4 柯西中值定理
        5.1.2.5 柯西函数方程
        5.1.2.6 泰勒公式与麦克劳林公式
        5.1.2.7 极值的第三充分条件
        5.1.2.8 两个重要极限
        5.1.2.9 欧拉常数
        5.1.3 以着名不等式为命题背景
        5.1.3.1 伯努利不等式
        5.1.3.2 詹森不等式
        5.1.3.3 对数平均不等式
        5.1.3.4 斯外尔不等式
        5.1.3.5 惠更斯不等式
        5.1.3.6 约当不等式
        5.1.4 以高等数学中的重要思想方法为命题背景
        5.1.4.1 极限思想
        5.1.4.2 积分思想
        5.1.4.3 (常微分)方程思想
    5.2 “高观点”下高考导数解题中常见的四类错误
        5.2.1 知识性错误
        5.2.1.1 柯西中值定理的误用
        5.2.1.2 拉格朗日中值定理的误用
        5.2.1.3 多元函数求最值,不注意边界情况
        5.2.1.4 不注意洛必达法则使用的前提
        5.2.2 逻辑性错误
        5.2.2.1 循环论证
        5.2.2.2 混淆充分条件和必要条件的逻辑关系
        5.2.3 策略性错误
        5.2.4 心理性错误
    5.3 “高观点”下高考导数解题的方法
        5.3.1 创设引理破难题
        5.3.2 洛氏法则先探路
        5.3.3 导数定义避超纲
        5.3.4 构造函数显神通
        5.3.5 多元偏导先找点
    5.4 “高观点”下高考导数解题研究的案例
        5.4.1 “高观点”视角研究解题方法
        5.4.2 “高观点”视角研究试题的命制
    5.5 小结
第6章 “高观点”下高中导数的教学研究
    6.1 “高观点”下高中导数教学的教学特点
        6.1.1 衔接性
        6.1.2 选择性
        6.1.3 引导性
    6.2 “高观点”下高中导数教学的教学原则
        6.2.1 严谨性原则
        6.2.2 直观性原则
        6.2.3 因材施教原则
        6.2.4 量力性原则
    6.3 “高观点”下高中导数教学的教学策略
        6.3.1 开发例题,拓展升华策略
        6.3.2 引入四规则,知识呈现多样化策略
        6.3.3 先实践操作,后说理策略
        6.3.4 融合信息技术,直观解释策略
        6.3.5 引导方向,自主学习策略
    6.4 “高观点”下高中导数的教学案例
        6.4.1 常微分方程视角下的教学案例
        6.4.2 微积分视角下的教学案例
        6.4.3 “泰勒公式”的教学案例
    6.5 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究的不足及展望
    7.3 结束语
参考文献
附录 A 教师调查问卷
附录 B 学生调查问卷
攻读学位期间发表的论文和研究成果
致谢

(4)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(5)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(6)基于“超星平台+腾讯会议”线上高等数学教学实践与改革探讨(论文提纲范文)

1规范“超星平台+腾讯会议”线上高等数学教学组织
    1.1“超星平台+腾讯会议”线上高等数学教学的管理与内容分配
    1.2“超星平台+腾讯会议”线上高等数学平台的选取
    1.3“超星平台+腾讯会议”线上高等数学方式的选择
    1.4“超星平台+腾讯会议”线上高等数学教师的选择
    1.5“超星平台+腾讯会议”线上高等数学教案的规范
2精化“超星平台+腾讯会议”线上高等数学教学课件
    2.1尽可能地发挥课件制作的作用
    2.2“超星平台+腾讯会议”线上高等数学教学课件应简单、清晰、恰当
    2.3“超星平台+腾讯会议”线上高等数学教学课件必须具有严密的逻辑性
    2.4教师必须详细解释“超星平台+腾讯会议”线上高等数学教学课件定义,开展相关线上课程知识练习
3完善“超星平台+腾讯会议”线上高等数学教学资源库
4组织“超星平台+腾讯会议”线上高等数学教学实施
    4.1加强“超星平台+腾讯会议”线上高等数学教学模式下的学生管理
    4.2加强“超星平台+腾讯会议”线上高等数学教学模式下的效果监控
    4.3加强“超星平台+腾讯会议”线上高等数学教学模式下的理念贯彻
    4.4加强“超星平台+腾讯会议”线上高等数学直播课教学
5结语

(7)大学生数字-空间三维心理表征的特点及其教育启示(论文提纲范文)

中文摘要
Abstract
绪论
    一、问题的提出
    二、研究目的及意义
    三、文献综述
    四、研究思路与方法
    五、数学-空间联合心理表征概念界定
    六、研究的创新点
第一章 大学生数学学习主要问题与原因分析
    第一节 大学生数学学习出现的问题
        一、数学内容难度增加
        二、在应试教育中形成的学习思维定式
        三、由认知因素导致的动机不足
    第二节 大学生数学教学中出现的问题
        一、重理论、轻应用
        二、数学教学方法与内容单一
        三、现有教学评价形式的局限性
    第三节 大学生数学学习问题成因分析
        一、对大学生数学学习认知特点认识不足
        二、课程教学改革缺乏实证研究支撑
        三、传统教育学研究方法存在局限性
    本章小结
第二章 大学生数字-空间三维心理表征认知特点的实验研究
    第一节 大学生水平方向的数字-空间联合心理表征特点研究
        一、大学生水平方向数字-空间联合心理表征研究设计与实施
        二、大学生水平方向数字-空间联合心理表征研究结果分析
    第二节 大学生垂直方向的数字-空间联合心理表征特点研究
        一、大学生垂直方向数字-空间联合心理表征研究设计与实施
        二、大学生垂直方向数字-空间联合心理表征研究结果分析
    第三节 大学生远近方向的数字-空间联合心理表征特点研究
        一、大学生远近方向数字-空间联合心理表征研究设计与实施
        二、大学生远近方向数字-空间联合心理表征研究结果分析
    本章小结
第三章 大学生数字-空间三维心理表征特点对数学教育的启示
    第一节 基于大学生认知特点促进其数学学习能力提升
        一、了解空间信息与数字的密切关系
        二、调整学习策略适应大学数学学习
        三、积极使用新技术促进数学学习
    第二节 基于新技术构建突出空间信息与操作性的教学方法
        一、计算机辅助教学促进数学内容的直观性与可操作性
        二、根据新技术优化教学内容的与教学理念
        三、促进数学教学评价方式多样化
结语
参考文献
致谢
攻读学位期间发表论文

(8)5G网络技术对提升4G网络性能的研究(论文提纲范文)

引言
1 4G网络现处理办法
2 4G网络可应用的5G关键技术
    2.1 Msssive MIMO技术
    2.2 极简载波技术
    2.3 超密集组网
    2.4 MEC技术
3 总结

(9)初高等数学衔接问题研究 ——以三角、反三角函数为例(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景
    1.2 研究意义
    1.3 文献综述
        1.3.1 三角函数与反三角函数的研究现状
        1.3.2 教育衔接问题的研究现状
    1.4 小结
第二章 三角及反三角函数教学及应用现状分析
    2.1 初等数学中三角及反三角函数的教学现状
        2.1.1 数学课程标准中有关三角函数与反三角函数的变化
        2.1.2 近五年三角函数与反三角函数高考试题分析
    2.2 高等数学中三角及反三角函数的应用现状
        2.2.1 极限中三角函数与反三角函数的应用
        2.2.2 微积分中三角函数与反三角函数的应用
        2.2.3 级数中三角函数与反三角函数的应用
第三章 三角及反三角函数的衔接问题及原因追溯
    3.1 三角及反三角函数存在的衔接问题
    3.2 三角及反三角函数衔接问题的成因
        3.2.1 初等数学中三角及反三角函数衔接问题的成因
        3.2.2 高等数学中三角及反三角函数衔接问题的成因
第四章 三角及反三角函数衔接建议
    4.1 针对教师提出的衔接建议
        4.1.1 重视学生数学思维的培养
        4.1.2 注重提升学生的学科核心素养
        4.1.3 培养终身学习观念,提升数学修养
    4.2 针对学生提出的衔接建议
        4.2.1 有意识的培养独立自主和善于思考的学习习惯
        4.2.2 发挥理性思辨精神,养成良好学习方法
        4.2.3 体会知识中蕴含的数学文化,激发数学学习兴趣
    4.3 有关课程改革和课程设置方面的衔接建议
        4.3.1 设置开放性渠道,促进学段间的交流
        4.3.2 开设第二课堂,扩大知识领域
        4.3.3 研发大学预修课程,减轻高等教育的压力
    4.4 弱化以考定教的教育环境
第五章 三角及反三角函数衔接的案例设计
    5.1 《简单的三角恒等变换》教学设计
    5.2 《反正弦函数》教学设计
第六章 衔接建议在高中定积分应用一课中的应用
    (一)问题设疑,引入新知
    (二)由浅入深,练习巩固
    (三)知识拓展,构建系统框架
结语
参考文献
攻读硕士学位期间取得的研究成果
致谢
附件

(10)微课和翻转课堂在高等数学教学中的应用(论文提纲范文)

1 引言
2 高等数学教学现状及存在的问题
3 微课和翻转课堂内涵
4 微课和翻转课堂在高等数学教学中的应用
    4.1 微课在高等数学教学中的应用
    4.2 翻转课堂在高等数学教学中的应用
5 结语

四、浅谈高等数学教学实践(论文参考文献)

  • [1]数学史融入高等数学教学的意义和方法探究[J]. 沈小雨. 江西电力职业技术学院学报, 2021(07)
  • [2]“课程思政”视域下初中数学教学设计研究 ——以函数教学为例[D]. 刘家新. 天津师范大学, 2021(09)
  • [3]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
  • [4]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [5]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [6]基于“超星平台+腾讯会议”线上高等数学教学实践与改革探讨[J]. 杜建慧. 财富时代, 2021(03)
  • [7]大学生数字-空间三维心理表征的特点及其教育启示[D]. 王若宇. 黑龙江大学, 2020(05)
  • [8]5G网络技术对提升4G网络性能的研究[J]. 刘奕. 数码世界, 2020(04)
  • [9]初高等数学衔接问题研究 ——以三角、反三角函数为例[D]. 李妍. 海南师范大学, 2020(01)
  • [10]微课和翻转课堂在高等数学教学中的应用[J]. 陈灵波. 黑龙江科学, 2020(03)

标签:;  ;  ;  ;  ;  

浅谈高等数学的教学实践
下载Doc文档

猜你喜欢